京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析也要讲究打组合拳
组合拳是拳击拳法的一种,在进攻当中利用各种单一拳法的组合连续攻击,使对手顾此失彼,达到击中对手的目的。联系到数据分析过程中,引申为采取一连套的方法实现一定的目标,而每一拳就是一种分析方法。
【我们遇到这样一个问题】
美国洛杉矶 12 个地区的 5 个经济指标调查数据(总人口、学校校龄、总雇员、专业服务、中等房价),为对这 12 个地区进行综合评价, 请你出出主意,我们希望看到这12个地区中的某几个区属于同一类型,从而分而治之,有针对性的做出有意义的措施。

每个地区都有5个评价指标,不同地区的同一指标分布不同,一个地区的五个指标大小有别,差异显著,现在要对着12个地区进行评价,这是一个十分苦恼的事情。
多个评价指标,希望分而治之,聚类分析无疑是非常棒的选择,分类变量为总人口、学校校龄、总雇员、专业服务、中等房价:执行SPSS聚类过程:

12个地区最终分为几类?每个类别又有哪些特征呢?这是聚类分析需要解决的细节。我们以分为3类来说明现在遇到的新问题,树形图让我们十分清晰的看到每一次聚类的细节,哪些地区最先被归并为一类,因为他们最相似,但是,我们对着树形图又能下什么结论呢,望洋兴叹吧,树形图就是大忽悠。
不妨看看每一类别下5个评价指标的均值比较吧,这似乎有所帮助,虽然还是一片混乱,但最少我们很容易发现,第二类在每一个指标中的均值都是糟糕的,急需政府加大管理、投资的力度,第一类的地区人口不算多,但各项指标的均值都是组内最高的,可以说第一类的1、4、5、10四个地区是不用美国政府操心了,但结论是我们依然没有非常清晰的描述评价结果。
问题出在哪里?或许是用来评价地区经济情况的指标过于多了吧!
我们已经意识到一直困扰我们的其实是评价指标过多,这就需要降维,因子分析算是不错的选择,尝试是突破瓶颈的最好实践办法。接下来,我们试图将总人口、学校校龄、总雇员、专业服务、中等房价这5个指标进行降维处理,不是直接踢出,而是寻找隐匿其中潜在的因素。
因子分析 是基于相关关系而进行的数据分析技术,是一种建立在众多的观测数据的基础上的降维处理方法。其主要目的是探索隐藏在大量观测数据背后的某种结构,寻找一组变量变化的“共同因子”。
提取前两个因子,可以解释5个指标的93.4%,在没有损失太多信息的同时,获得相对良好的解释能力,这是一个稳赚不赔的卖卖。
旋转之后的载荷结果令我们十分的满意,因子1与“校龄、服务、房价”三个指标相关性极强,而这三项总是居民乐开花,地区教育水平高,多项服务,房价且不高,这是理想的居住场所,可以命名为“福利因子”,在看因子2,与“总人口、总雇员”极相关,这是“人口因子”。
5个评价指标,现在可以用2个因子来代替,此时来描述每个地区的经济情况就非常的方便了,在此基础上再“打一拳”,会有什么样的惊喜?现在,聚类分析的步骤不变,参与聚类的变量为:福利因子和人口因子。
第一类地区,首先这些地区的福利因子较好,校龄、服务项目两基础设施方面都非常完善,但是享受好福利的同时,需要更多的钱购买房子,这是富人区吧。第二类地区,人口因子、福利因子都比较差,应当受到更多关注和支持。第三类,很明显是人口众多地区,但这里的居民未公平享受到各项福利,唯一心里安慰的是房价不高吧。
到此,我们可以看出,组合拳的结果更加丰富,在不真实反映地区经济分类后,还挖潜出影响各地区排名的潜在因素,让市政决策者能够更加清晰的综合评价各地区优缺点,有的放矢。
在确定分析目标之后,数据分析过程中不妨打出组合拳,将获得更多收获,找到更本质的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27