京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析也要讲究打组合拳
组合拳是拳击拳法的一种,在进攻当中利用各种单一拳法的组合连续攻击,使对手顾此失彼,达到击中对手的目的。联系到数据分析过程中,引申为采取一连套的方法实现一定的目标,而每一拳就是一种分析方法。
【我们遇到这样一个问题】
美国洛杉矶 12 个地区的 5 个经济指标调查数据(总人口、学校校龄、总雇员、专业服务、中等房价),为对这 12 个地区进行综合评价, 请你出出主意,我们希望看到这12个地区中的某几个区属于同一类型,从而分而治之,有针对性的做出有意义的措施。

每个地区都有5个评价指标,不同地区的同一指标分布不同,一个地区的五个指标大小有别,差异显著,现在要对着12个地区进行评价,这是一个十分苦恼的事情。
多个评价指标,希望分而治之,聚类分析无疑是非常棒的选择,分类变量为总人口、学校校龄、总雇员、专业服务、中等房价:执行SPSS聚类过程:

12个地区最终分为几类?每个类别又有哪些特征呢?这是聚类分析需要解决的细节。我们以分为3类来说明现在遇到的新问题,树形图让我们十分清晰的看到每一次聚类的细节,哪些地区最先被归并为一类,因为他们最相似,但是,我们对着树形图又能下什么结论呢,望洋兴叹吧,树形图就是大忽悠。
不妨看看每一类别下5个评价指标的均值比较吧,这似乎有所帮助,虽然还是一片混乱,但最少我们很容易发现,第二类在每一个指标中的均值都是糟糕的,急需政府加大管理、投资的力度,第一类的地区人口不算多,但各项指标的均值都是组内最高的,可以说第一类的1、4、5、10四个地区是不用美国政府操心了,但结论是我们依然没有非常清晰的描述评价结果。
问题出在哪里?或许是用来评价地区经济情况的指标过于多了吧!
我们已经意识到一直困扰我们的其实是评价指标过多,这就需要降维,因子分析算是不错的选择,尝试是突破瓶颈的最好实践办法。接下来,我们试图将总人口、学校校龄、总雇员、专业服务、中等房价这5个指标进行降维处理,不是直接踢出,而是寻找隐匿其中潜在的因素。
因子分析 是基于相关关系而进行的数据分析技术,是一种建立在众多的观测数据的基础上的降维处理方法。其主要目的是探索隐藏在大量观测数据背后的某种结构,寻找一组变量变化的“共同因子”。
提取前两个因子,可以解释5个指标的93.4%,在没有损失太多信息的同时,获得相对良好的解释能力,这是一个稳赚不赔的卖卖。
旋转之后的载荷结果令我们十分的满意,因子1与“校龄、服务、房价”三个指标相关性极强,而这三项总是居民乐开花,地区教育水平高,多项服务,房价且不高,这是理想的居住场所,可以命名为“福利因子”,在看因子2,与“总人口、总雇员”极相关,这是“人口因子”。
5个评价指标,现在可以用2个因子来代替,此时来描述每个地区的经济情况就非常的方便了,在此基础上再“打一拳”,会有什么样的惊喜?现在,聚类分析的步骤不变,参与聚类的变量为:福利因子和人口因子。
第一类地区,首先这些地区的福利因子较好,校龄、服务项目两基础设施方面都非常完善,但是享受好福利的同时,需要更多的钱购买房子,这是富人区吧。第二类地区,人口因子、福利因子都比较差,应当受到更多关注和支持。第三类,很明显是人口众多地区,但这里的居民未公平享受到各项福利,唯一心里安慰的是房价不高吧。
到此,我们可以看出,组合拳的结果更加丰富,在不真实反映地区经济分类后,还挖潜出影响各地区排名的潜在因素,让市政决策者能够更加清晰的综合评价各地区优缺点,有的放矢。
在确定分析目标之后,数据分析过程中不妨打出组合拳,将获得更多收获,找到更本质的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12