
数据分析与数据挖掘从这开始
很多人选择大数据行业,选择数据分析更多看到的是这个岗位前景不错、薪资待遇也不错,各种培训让人看起来事情也挺简单。往往没有对岗位和自身进行合理评估,真正在求职或者入职之后或许才发现其实跟自己想的也许完全不一样。
其实在入行数据分析或者任何一行之前,你都要好好思考这些问题:我希望进入哪些行业呢?这行业有前景吗?需要什么样的知识结构?符合我的兴趣方向吗?知己知彼百战不殆,在做职业选择或者机会选择时可使用SWOT分析模型,更好的认识自己。
SWOT:优势(Strength)、劣势(Weakness)、机会(Opportunity)、威胁(Threat)。其中,优势与劣势是对自身条件的分析,机会与威胁是对外部环境的分析。
一、个人优势与劣势分析(不限以下)
对于个人的评估,可以自己进行,也可以邀请朋友家人协助。全面客观的判断自我,对职业选择尤为重要。
1、职业爱好:分析需求、写代码、与人沟通、探索未知是你喜欢的吗
2、思考能力:如何根据数据推演、分析、提出解决方案,这常常需要你脑洞大开哦
3、学习能力:数据分析与IT行业一样,是需要持续保持学习状态的,这你能坚持么
4、沟通合作能力数据分析师需要与业务部门、研发部门等频繁沟通和合作,这你擅长么
5、性格:动要能沟通、吵架,静要能分析写代码,这随意切换可以么?
对于你的缺点和补足:你可以考虑改进使之不再成为短板,比如学习数据分析的基本原理、技术、工具,但是兴趣、性格方面呢?或者放弃你技能不擅长的职业。
二、行业机会与威胁分析(不限以下)
根据自己的优点和缺点,选择几个你感兴趣的行业和职业进行分析,了解他们的机会和威胁。所谓,“男怕入错行,女怕嫁错郎”,有前景的行业和职业对于个人选择来说有很大的影响。下面以大数据行业——数据分析岗位为例:
1、行业情况:毋庸置疑,大数据是21世纪很火热的行业之一,已经渗透到每一个行业和业务职能领域
2、企业情况:这家企业重视数据吗?有数据基础么?数据有所为么
3、岗位就业情况:只要你练好真本事,数据分析师是个高薪职业哦,而且人才缺口较大
4、岗位要求:需要发现问题、分析问题、解决问题的能力,你需要懂商业、提取处理分析数据、提出解决方案,一切不产出效果的数据分析都是耍流氓
职业选择:充分评估行业岗位及自身情况,扬长避短,选择自己喜欢擅长且有“钱景”和“前途”的职业,自测后,数据分析还是你的菜么?
我需要准备什么
如果在做完个人SWOT分析之后,你毅然选择数据分析工作。那么恭喜你,你离21世纪最赚钱的职业之一已经不远了了,吼吼。
想要做好数据分析真的需要掌握多方面的知识和技能,主要分软+硬两大实力,软实力还包括沟通能力、表达能力、设计能力等;另外业务理解能力需要逐步积累。那么,对于入门,可从思维、心术、理论、工具四方面进行训练和事先判断。思维和心术主要靠性格和长期训练积累,下面主要介绍大家关注的理论和工具。
一、我要看什么书
数据分析需要具备多方面的理论基础,比如基本的数据分析知识:统计、概率论、数据挖掘基础理论等;基本的商业常识:营销理论、战略管理等;数据处理知识:数据库、数据结构等。
但是对于新手而言,这实在是信息量太大了,所以在此阶段,能清晰地知道数据分析能解决什么问题、需要什么方法论、需要掌握什么基本技术及原理足够。记住,我们是入门,懂得常规知识并能找到基础的工作是我们的目标。
二、我要学什么工具
为什么很多人学了Pyhon、Hadoop、R、Spss,依然做不好数据分析。
数据分析最关键的一定是理解业务的能力以及整理分析思路的能力,其次才是动手能力,也就是驾驭工具的能力。至于工具,不论黑猫白猫能解决问题就是好猫,不是说Hadoop就比Oracle强,pyhon就比spss厉害,不同的场景不同的背景对工具的使用也不同。
鉴于学习数据分析师的朋友,推荐可以去cda数据分析师官网学习,CDA数据分析师系统培训覆盖了国内企业招聘数据分析师所要求的技能,包括统计知识、软件应用(SPSS/SAS/PYTHON等)、数据挖掘、数据库、大数据、数据报告等。CDA数据分析师认证考试由经管之家每年举办两次,通过考试者可以获得CDA数据分析师LEVELⅠⅡⅢ等级证书,此证书代表数据分析师人才技能水平,为企业事业单位选拔和聘用专业人才的参考依据。
三、还要准备什么
磨砺心志,主动寻找实践机会,优秀的数据分析师一定是主动发现问题、解决问题并扛得住压力的。
人生是漫长而持续的过程,不必太计较眼前的得与失,如果方向对,慢点也是快。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10