京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用Excel绘制F分布概率密度函数图表
利用Excel绘制t分布的概率密度函数的相同方式,可以绘制F分布的概率密度函数图表。
F分布的概率密度函数如下图所示:

其中:μ为分子自由度,ν为分母自由度
Γ为伽马函数的的符号
由于Excel没有求F分布的概率密度函数可用,但是F分布中涉及到GAMMALN()函数,而excel是提供GAMMALN()函数的,所以我们可以使用excel中的GAMMALN()函数的运算来计算得到F分布的概率密度函数。(可参见【附录】)
经转换后上述公式为:
F(X,df1,df2)=EXP(GAMMALN((DF1+DF2)/2))*(DF1^(DF1/2))*(DF2^(DF2/2))*(X^(DF1/2-1))/EXP(GAMMALN(DF1/2))/EXP(GAMMALN(DF2/2))/((DF2+DF1*X)^((DF1+DF2)/2))
……………………………………………………………公式(1)
现以分子自由度μ=20,分母自由度ν=20为例,求F分布的图表,可由以下几步进行:
第1步 在Excel单元格中输入自变量
在A列中,在单元格A2中输入0,在单元格A3中输入0.1,递增0.1,选中单元格A2与A3,按住右下角的填充控制点一直拖到单元格A46是4.4为止,A列的这些数据就作为随机变量t的取值。
第2步 在单元格B2中输入计算t分布的概率密度函数的公式
对于公式(1),由于自由度μ=20 ,ν=20则由DF1=20,DF2=20代入;自变量X就是单元格A2的值,所以按Excel相对引用的规则,X由A2代入即可,于是单元格B2内容是
=EXP(GAMMALN((20+20)/2))/(EXP(GAMMALN(20/2))*EXP(GAMMALN(20/2)))*(20/20)^(20/2)*A2^(20/2-1)*(1+20/20*A2)^(-1/2*(20+20))
第3步 复制公式
按住单元格B2右下角的填充控制点,向下一直拖曳到B46,将B2的公式填充复制到B列的相应的单元格。
第4步 作F分布概率密度函数图表
选择A1:B46,选“插入”-“图表”-“散点图”-“带平滑线的散点图”,输入标题,调整字号、线型等格式,完成t分布概率密度函数图,如图-1所示:
如将上图的图表类型换成二维面积图,则如图-2-1(2003版)和图-2-2(2010版)所示:
如将上图的图表类型换成三维面积图,则如图-3-1(2003版)和图-3-2(2010版)所示:
为 了方便调整不同的自由度参数值观察图形变化,在Excel数据表中可在第一行的某几个单元格如I1、I2;J1、J2;K1、K2;L1、L2;M1、 M2输入不同参数,然后在公式引用这几个参数时使用不同的方式:列数据为相对引用,而行数据为绝对引用,如I$1、I$2;J$1、J$2;K$1、 K$2;L$1、L$2;M$1、M$2。而A列自变量值则使用:列数据为绝对引用,而行数据为相对引用,如$A4、$A5、$A6等。
例:B4单元格的公式则为:
=EXP(GAMMALN((I$1+I$2)/2))*(I$1^(I$1/2))*(I$2^(I$2/2))*($A4^(I$1/2-1))/EXP(GAMMALN(I$1/2))/EXP(GAMMALN(I$2/2))/((I$2+I$1*$A4)^((I$1+I$2)/2))
这样引用的公式可以直接拖曳复制B4:F48。
数据表输入截图如图-4:
在公式输入后,选择单元格区间A3:F48,在同一图表作出五种不同自由度的平滑曲线的散点图,如图-5所示:
【附录:关于GAMMALN()函数和EXP()函数】
函数 GAMMALN 的计算公式如下:
伽马函数Γ(x)是个定积分,无法直接计算,可由GAMMALN()函数和EXP()函数,并利用对数恒等式:
间接求得,下面对以上内容使用Excel中的相关文字加以说明。
GAMMALN函数的作用: 返回伽玛函数Γ(x)的自然对数。
语法:
GAMMALN(x)
X为需要计算函数 GAMMALN 的数值。
GAMMALN(x)=LN(Γ(x))
说明:
如果 x 为非数值型,函数 GAMMALN 返回错误值 #VALUE!。
如果 x ≤ 0,函数 GAMMAIN 返回错误值 #NUM!。
数字 e 的 GAMMALN(i) 次幂等于 (i-1)!,其中 i 为整数,常数 e 等于 2.71828182845904,是自然对数的底数。
GAMMALN(8)=8.525161
EXP(GAMMALN(8))=5040=(8-1)!=FACT(7)
FACT(N)为返回N-1的阶乘(N-1)!=1×2×3×4×…×(N-2)×(N-1)的函数(其中N为自然数)
关于EXP()函数:
EXP()返回 e 的 n 次幂。常数 e 等于 2.71828182845904,是自然对数的底数。
语法
EXP(number)
Number 为底数 e 的指数。
说明
若要计算以其他常数为底的幂,请使用指数操作符 (^)。
EXP 函数是计算自然对数的 LN 函数的反函数。
EXP(1)=2.718282(e的近似值)
EXP(2)=7.389056
EXP(1)=20.08554
EXP(LN(3))=3
于是为求伽马函数Γ(x)首先要回忆一个最基本的恒等式:

即可得:

把该恒等式用于伽马函数的取得,可以由以下两步进行:
先用GAMMALN(x),取得自然对数;
再用EXP(GAMMALN(x)),取得伽马函数的值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27