
使用Excel绘制F分布概率密度函数图表
利用Excel绘制t分布的概率密度函数的相同方式,可以绘制F分布的概率密度函数图表。
F分布的概率密度函数如下图所示:
其中:μ为分子自由度,ν为分母自由度
Γ为伽马函数的的符号
由于Excel没有求F分布的概率密度函数可用,但是F分布中涉及到GAMMALN()函数,而excel是提供GAMMALN()函数的,所以我们可以使用excel中的GAMMALN()函数的运算来计算得到F分布的概率密度函数。(可参见【附录】)
经转换后上述公式为:
F(X,df1,df2)=EXP(GAMMALN((DF1+DF2)/2))*(DF1^(DF1/2))*(DF2^(DF2/2))*(X^(DF1/2-1))/EXP(GAMMALN(DF1/2))/EXP(GAMMALN(DF2/2))/((DF2+DF1*X)^((DF1+DF2)/2))
……………………………………………………………公式(1)
现以分子自由度μ=20,分母自由度ν=20为例,求F分布的图表,可由以下几步进行:
第1步 在Excel单元格中输入自变量
在A列中,在单元格A2中输入0,在单元格A3中输入0.1,递增0.1,选中单元格A2与A3,按住右下角的填充控制点一直拖到单元格A46是4.4为止,A列的这些数据就作为随机变量t的取值。
第2步 在单元格B2中输入计算t分布的概率密度函数的公式
对于公式(1),由于自由度μ=20 ,ν=20则由DF1=20,DF2=20代入;自变量X就是单元格A2的值,所以按Excel相对引用的规则,X由A2代入即可,于是单元格B2内容是
=EXP(GAMMALN((20+20)/2))/(EXP(GAMMALN(20/2))*EXP(GAMMALN(20/2)))*(20/20)^(20/2)*A2^(20/2-1)*(1+20/20*A2)^(-1/2*(20+20))
第3步 复制公式
按住单元格B2右下角的填充控制点,向下一直拖曳到B46,将B2的公式填充复制到B列的相应的单元格。
第4步 作F分布概率密度函数图表
选择A1:B46,选“插入”-“图表”-“散点图”-“带平滑线的散点图”,输入标题,调整字号、线型等格式,完成t分布概率密度函数图,如图-1所示:
如将上图的图表类型换成二维面积图,则如图-2-1(2003版)和图-2-2(2010版)所示:
如将上图的图表类型换成三维面积图,则如图-3-1(2003版)和图-3-2(2010版)所示:
为 了方便调整不同的自由度参数值观察图形变化,在Excel数据表中可在第一行的某几个单元格如I1、I2;J1、J2;K1、K2;L1、L2;M1、 M2输入不同参数,然后在公式引用这几个参数时使用不同的方式:列数据为相对引用,而行数据为绝对引用,如I$1、I$2;J$1、J$2;K$1、 K$2;L$1、L$2;M$1、M$2。而A列自变量值则使用:列数据为绝对引用,而行数据为相对引用,如$A4、$A5、$A6等。
例:B4单元格的公式则为:
=EXP(GAMMALN((I$1+I$2)/2))*(I$1^(I$1/2))*(I$2^(I$2/2))*($A4^(I$1/2-1))/EXP(GAMMALN(I$1/2))/EXP(GAMMALN(I$2/2))/((I$2+I$1*$A4)^((I$1+I$2)/2))
这样引用的公式可以直接拖曳复制B4:F48。
数据表输入截图如图-4:
在公式输入后,选择单元格区间A3:F48,在同一图表作出五种不同自由度的平滑曲线的散点图,如图-5所示:
【附录:关于GAMMALN()函数和EXP()函数】
函数 GAMMALN 的计算公式如下:
伽马函数Γ(x)是个定积分,无法直接计算,可由GAMMALN()函数和EXP()函数,并利用对数恒等式:
间接求得,下面对以上内容使用Excel中的相关文字加以说明。
GAMMALN函数的作用: 返回伽玛函数Γ(x)的自然对数。
语法:
GAMMALN(x)
X为需要计算函数 GAMMALN 的数值。
GAMMALN(x)=LN(Γ(x))
说明:
如果 x 为非数值型,函数 GAMMALN 返回错误值 #VALUE!。
如果 x ≤ 0,函数 GAMMAIN 返回错误值 #NUM!。
数字 e 的 GAMMALN(i) 次幂等于 (i-1)!,其中 i 为整数,常数 e 等于 2.71828182845904,是自然对数的底数。
GAMMALN(8)=8.525161
EXP(GAMMALN(8))=5040=(8-1)!=FACT(7)
FACT(N)为返回N-1的阶乘(N-1)!=1×2×3×4×…×(N-2)×(N-1)的函数(其中N为自然数)
关于EXP()函数:
EXP()返回 e 的 n 次幂。常数 e 等于 2.71828182845904,是自然对数的底数。
语法
EXP(number)
Number 为底数 e 的指数。
说明
若要计算以其他常数为底的幂,请使用指数操作符 (^)。
EXP 函数是计算自然对数的 LN 函数的反函数。
EXP(1)=2.718282(e的近似值)
EXP(2)=7.389056
EXP(1)=20.08554
EXP(LN(3))=3
于是为求伽马函数Γ(x)首先要回忆一个最基本的恒等式:
即可得:
把该恒等式用于伽马函数的取得,可以由以下两步进行:
先用GAMMALN(x),取得自然对数;
再用EXP(GAMMALN(x)),取得伽马函数的值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10