京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:解析大数据的幕后推手是什么
当今,信息产业发达国家,如美、英、德、日等此前已将大数据作为国家核心竞争力提升为了国家战略。数字主权将是继边防、海防、空防之后,又一个大国博弈的空间。
一、大数据的定义和特征
大数据并非现在才出现。中国东汉时期人口已达6千多万,这显然是一个大数据,但不是今天讨论的大数据。维基百科对大数据的定义为:“大数据意指一个超大、难以用现有常规的数据库管理技术和工具处理的数据集。”大数据研究的目的是将数据转化为知识,探索数据的产生机制,进行预测和政策制定。
大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Volume、Variety、Value和Velocity),即体量大、多样性、价值密度低和处理速度快。大数据的“大”没有精确的定义,不同的时代对应着不同的大数据规模。二是数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。三是价值密度低。大数据分析犹如“大海捞针”。四是处理速度快。
二、解读大数据的主要成因
大数据的背后推手有哪些?以下三大因素是大数据的主要成因:
第一,人类保持数据的能力增强。
预计2020年,1太硬盘的价格将下降到3美元,相当于一杯咖啡的价格。一所普通大学的图书馆,其馆藏量大约就一两个太。
第二,人类生产数据的能力增强。
从2004年起,以脸谱网(Face book)、推特(Twitter)为代表的社交媒体相继问世,拉开了互联网的崭新时代—2.0时代。随着社交媒体的问世,带来以下三大变化:
一是社交媒体把交流和协同的功能推到了一个登峰造极的高度。在此之前,互联网的主要作用是信息的传播和分享,其最主要的组织形式是建立网站,但网站是静态的。进入Web2.0时代之后,互联网开始成为人们实时互动、交流协同的载体。
二是社交媒体推动数据总量骤然增加。由于社交媒体的横空出世,人类自己开始在互联网上生产数据,例如发推特、微博和微信,记录各自的活动和行为,全世界的网民都是数据的生产者,每个网民都犹如一个信息系统、一个传感器,不断地制造数据,这引发了人类历史上迄今为止最庞大的数据爆炸。
三是社交媒体使人类的数据世界更为复杂。数据包含两类数据:结构化数据和非结构化数据。在大家发的微博中,你的带图片、他的带视频,大小、结构完全不一样。因为没有严整的结构,在社交媒体上产生的数据,也被称为非结构化数据。目前全世界的数据大约75%都是非结构化数据。这部分数据的处理,远比结构严整的数据困难。
第三,人类使用数据的能力增强。
大数据之大,不仅在于其大容量,更在于其大价值。最根本的原因,是人类使用数据的能力取得了重大突破和进展。
三、大数据应用
主要有以下四个方面:
第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。
移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
第二,大数据是信息产业持续高速增长的新引擎。
大数据时代,面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,将催生一体化数据存储处理服务器、内存计算等市场。
第三,大数据利用将成为提高核心竞争力的关键因素。
各行各业的决策正在从“业务驱动” 转变“数据驱动”。对大数据分析可以使零售商实时掌握市场动态并迅速做出应对;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据在促进经济发展、维护社会稳定等方面的重要作用已开始得以发挥。
第四,大数据时代科学研究的方法手段将发生重大改变。
抽样调查是社会科学的基本研究方法。但在大数据时代,不需要通过抽样,而是通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23