
机器学习-大数据的关键_数据分析师
Splunk的用户大会已经接近尾声。三天时间的会议里,共进行了160多个主题研讨,涵盖了从安全、运营到商业智能,甚至包括物联网,会议中一遍又一遍出现相同的中心主题:大数据的关键是机器学习。
存储不再是一个问题。从运行Hadoop兼容节点的专用存储硬件,到数百台使用普通硬盘的计算机组成的集群,毫无疑问,我们具备了处理这类存储问题的能力。另一方面,像Splunk这样的分析和可视化工具也应运而生。如果你知道你要找什么,这些工具可以很快给你所需要的答案。
但是,你应该找什么呢?对于绝大多数的基层供应商来说,问题的答案就在机器学习里面。无论你是在谈论网络流量、用户行为,或者是消费趋势,这都不要紧,你能真正洞察你所监控的东西的方式是找到数据中的模式和相关性。虽然人类操作员可以通过试错法蹒跚而行,但他们相信,可以通过训练计算机来得到结果,并且速度更快和不带偏见。
当然,这并不是说人类已经过时。必须有人来确认相关性不只是种巧合,并找出对信息采取行动的方法。而这也正是前面所提到的可视化工具可以发挥作用的地方。
大数据和机器学习的主要用例
虽然大数据的潜力几乎是无限的,但不可避免的是一或两个行业会在前面带头冲锋。如果再过一年问我,我可能会说不同的话,但现在的预测是,无论是安全还是运营,都会处在第一线。
只要比那些只收现金的咖啡亭大的公司,都需要考虑信息的安全性。即使他们没有知识产权可言,但他们都在处理一些敏感信息,如信用卡号码。有方法可以可靠地检测和阻止那些正在发生的违约行为,对公司的长期成功是至关重要的。基于机器学习的安全产品承诺提供这种能力,并且它的易用性接近“交钥匙工程的水准。
与此类似,运营分析将会流行起来。现在你就可以买到工具来监视你的网络,解码数据包,或向你精确呈现一个给定的REST调用是如何经过服务器的中间层一路到达数据库或文件系统的,然后把它和一周,一个月或一年以前的行为做对比。这不是未来的概念,而是今天现成的东西,并可以在一周内运行起来。
其它领域的研究将会继续下去,但不会有如此快的速度。欺诈检测是非常重要的,但大多数公司会依靠他们的金融机构来设计和实施必要的控制措施。我预计在这方面不会有太多商业化的、现成的产品。
商业智能是另一个会看到大量金钱投入的研究领域。但可口可乐与百事可乐公司用来确定下一个流行口味的算法,看起来一点也不像通用和福特公司用来预测每种尺寸的车型会有多少量的算法。如此类推,商业化产品对大数据的运用目前可能会主要局限于基本的分析和可视化方面。
其他的会议思考
总而言之,Splunk举办了一次非常好的会议。一切都组织得很好,每个人,从初学者到最高级的数据挖掘工程师,都会有相关的议题研讨。我唯一的抱怨是,议题研讨没有记录。因为有这么多的内容,人们势必会因为冲突错过一两个重要的议题。
即使你对Splunk本身不感兴趣,但对大数据、机器学习以及相关主题感兴趣的任何人来说,这都是一次重要的会议。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10