
如何分析销售中各种数据
如何分析销售中各种数据。为了很好把握那么多的分析数据,需要建立一个结构,立足于结构,分析数据就非常容易了。有了结构,那么多的数据应该如何分析,我们可以把数据笼统地分为财务数据和非财务数据,以快销品为例,可以看出在所有分析的数据中,总结起来一共有两大类:财务、覆盖和店内表现。通过渠道、产品和时间构成分析生意数据的三个维度,再把两大类数据指标应用到分析维度中,就可以详细分析销售的生意数据。
最近的case里client也在做商务智能项目,营销公司的老总们都很支持项目,都认为有一个很好的分析工具,但同样存有疑惑,不知道到底想要什么数据,担心商务智能不给出想要的数据。
作为局外人,我感觉这些老总是因为不知道到底需要哪些数据,为其决策提供支持。在此,我把我以前对数据的理解整理出来,希望能够为企业里有各种各样的数据,尤其是有关销售的数据,如销售额、利润、某个产品在某个渠道中的销售波动情况等等,不但很多企业外面的人,连实际作决策的人都不知道需要什么数据。为了很好把握那么多的分析数据,需要建立一个结构,立足于结构,分析数据就非常容易了
1.建立一个渠道、产品和时间三维数据分析概念
本质上讲,企业最重要是盈利的,盈利的手段只有一种卖产品,卖更多的产品。那些什么促销、广告、品牌、PR等等,最后都要落实到卖产品上来,所以产品一定是企业最关注的。其次价值需要传递的,从销售的角度来看,渠道是传递价格的基础,不同的渠道销量、盈利多少是要重点监测的内容,所以渠道将成为结构的一个纬度;最后,任何事物的发展都需要有时间来促成、比较的,企业发展也一样,所以时间这个纬度自然不能省。
综述之,我们可以建立一个渠道、产品、时间为度的结构:
(1) 渠道维度:区域、经销商、客户类型
(2) 产品维度:品牌/品种,甚至于包括个别非常重要的SKU
(3) 时间维度:按照时间进度,比较分析数据,一般包括当月、上月、本年累计、去年同期等等。
2.两种数据分析指标
有了结构,那么多的数据应该如何分析,我们可以把数据笼统地分为财务数据和非财务数据,以快销品为例,可以看出在所有分析的数据中,总结起来一共有两大类:财务、覆盖和店内表现。
3.把数据放在三维结构中,便是完整的商务智能的架构
通过渠道、产品和时间构成分析生意数据的三个维度,再把两大类数据指标应用到分析维度中,就可以详细分析销售的生意数据。三个维度和两类数据的关系如下图所示:
只要把握该架构,任何所谓的商务智能BI、联合生意计划(JBP)、销售分析体系等都是不可能逃离该框架。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11