
创业成与败,做好数据分析才是关键
在这竞争与机遇并存的数字信息化时代下,传统意义上的管理分析和决策手段发生了微妙的变化,已经不能再靠旧的思维模式去做决策。在产品运营过程中,总会遇到各种各样的问题,比如某款产品数据一直良好,某段时间数据突然跌落,是因为市场宣传力度减弱,还是因为用户生命周期上限,又或者是因为其他竞争产品的冲击呢?这个时候,利用数据分析才是找到问题原因的关键!
很多创业公司在经营的各个环节中都会产生大量的数据,做好数据分析工作,对公司的运营及策略调整起着至关重要的作用,那么不同阶段的数据分析有何不同呢?
一般来说,创业公司会经历产品4个生命周期阶段。
第一个阶段,叫冷启动。这个时候公司特别早期,天使轮或者A轮,甚至融资还未成功。处在这个阶段的公司,用大数据驱动是一个伪命题——因为客户数量有限,样本性不足。他们需要更多地去了解潜在客户的需求,去“求”客户来用这个产品。
第二个阶段,增长前期。就是冷启动接近完成。有经验的创业者,会开始重视和增长有关系的一些核心指标,比如说日/月活跃,留存度。这些指标的目的不是为了衡量产品当前当下的表现,而是为了未来做增长时有可比较的基准。
第三个阶段,增长期。这个阶段就能看出来好的创业公司和普通创业公司的巨大差别——效率。无论PR还是做活动,都需要人力和时间成本。如何在增长中,找到效率最高的渠道?这个我觉得,是创业公司之间PK的核心竞争力。如果不做数据驱动,靠直觉,一次两次可以,但没有人能进赌场连赢一万次。所以,直觉需要和数据进行结合,这样企业能迅速优化各个渠道,来提高单位时间的转化效率。
第四个阶段,变现期。业务变现,要求很高的用户基数。一般互联网产品,其中一小部分高活跃、体验好的用户,会转化为付费用户。类似一个漏斗,不断地去筛,这里面就是要拼运营的效率了。比如说,电商用户的转化漏斗一般是:访问——注册——搜索——浏览——加入购物车——支付,或者到未来的退货。这是非常非常长的一个漏斗,真正要做好数据化运营,要对漏斗的每个环节持续地进行追踪。
在麦客加看来,一个好的企业,特别是以后要做营收的企业,必须要关注各个部门各个环节的转化效率。这种转化效率,要达成的手段,可以通过市场营销的方法、产品改进的方法、甚至客户运营的方法。而其中每个环节小幅提高,加在一起就是一个倍数的提高。总之,在企业运营过程中,数据分析始终扮演着至关重要的角色!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11