
Excel用于数据分析的优劣势详解
很多Excel新手非常迷信Excel,可以说到了盲目的程度,而很多高手往往突然拿出非常复杂的函数公式组合,其效果相当于一闷棍,不把新手吓晕誓不罢休!
而Excel可以说是万能但又不是万能的,学习Excel就是为了用来统计数据分析数据的,大而复杂的数据和分析有时候用Excel处理并不是最佳选择,硬着头皮上会有悖于循序渐进的学习规律。这也是一批报表工具或者一些集成报表功能的系统出现的原因。
因此,这里把Excel的劣势和优势作一浅显的分析,希望大家能正确认识它,学习它,并驯服它与工作之中。
Excel与数据库产品之间的比较
Excel是一个电子表格程序,而不是一个数据库程序,这一点请大家一定要时刻提醒自己。一个数据库程序在数据存储和数据验证上花了大量的工作,而且通常有非常良好的结构化查询语言,SQL语句查询就是其中的一种。数据库程序通常可以存放的数据量是相当大的,而且数据之间的结构也非常复杂。这些都是Excel所不能企及的,从成本上来讲数据库产品的维护和开发要比Excel大得多。Excel和数据库程序在开发中的特点比较如下
(1)数据量。一般而言,如果你的Excel工作表在一个月之内就可能突破10000条记录的话,这个时候建议你还是选用数据库产品,尽管在Excel和数据库之间可以进行数据转换,但是当Excel的数据量过大的时候,它的查询和计算的速度会明显下降。(但是使用一个小技巧,也可以将大量的数据拆分到逻辑上有明显区别的工作表中)。比如:一个小小的超市,10名收款柜台员每天接待200人每人10件商品,Excel立马倒下,根本不能施展手脚。
(2)数据安全性。Excel提供了有限的安全性,它只能限制用户访问和修改的权限,但是无法对用户进行角色的管理,也不能对数据进行行级的访问限制。Excel在一些简单的破解程序面前毫无招架之力,无论你如何密码,我不多说。
(3)多用户管理。因为Excel程序是一个单机程序,所以一个Excel文件通常无法被多个用户同时管理。而数据库通常具备完整的管理控制台,可以方便多个用户分别对数据库进行同时操作。比如:还是前面提到的小小超市,10人同时操作,Excel就派不上用场了。
(4)计算与数据建模。Excel的强大之处就是它的计算与建模能力。而数据库程序通常只能完成相对简单的运算和建模。
(5)跨平台性,这一点。可以说是Excel的软肋,因为Excel只能跨PC和Jmac两种平台,而大多数的数据库产品可以通过安装客户端的方式运行在任意平台上,但是如果你正在使用Excel,通常情况下,你的开发应该都在windows下进行.
Excel的优势之处:
(1)数据透视功能。一个新手,只要认真使用向导1-2小时就可以马马虎虎上路。
(2)统计分析,其实包含在数据透视功能之中,但是非常独特,常用的检验方式一键搞定。
(3)图表功能, Excel拥有各种丰富的可开发的图表形式的独门武工。
(4)自动汇总功能,这个功能其他程序都有,但是Excel简便灵活。
(5)计算公式丰富。
总地来说,Excel适合于开发单机版、访问量与开发维护量都不是很大、对数据有分析建模功能的应用程序。
但是在企业应用的信息系统中,Excel对于业务开发来讲并不是最佳的工具,对于办公系统,可以选择OA;关于客户数据管理,可以选择CRM;关于生产管理系统,可以选择ERP。因为这些工具相比于Excel,具有较强的业务属性,尤其是在当今大数据量,非结构化数据利用的背景下。在而且对于企业的信息化,Excel在管理方面并不具有优势。
但有人认为Excel基础,人人会用,开发比较通用啊,那些业务系统并不具有这样的开发优势。
确实,这也是很多企业信息部门或业务部门选择报表工具的原因,以FineReport为例,因为报表工具有类Excel的设计界面,而且作为一个系统对数据库有良好的支撑性。
优势:
1、支持的数据源多,对企业系统的适应性强
2、支持大数量,单次取几十万的数据量是绝对没什么问题的
3、开发量少,开发灵活简单,集成性强
4、由于类似Excel的操作,使用简单
5、填报功能,弥补Excel只能单向取数不能往数据库导入数据的不足
6、使用简单,避免业务人员SQL取数,VBA开发
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10