京公网安备 11010802034615号
经营许可证编号:京B2-20210330
spss读取数据syntax语句
生活中,我们常常因为这样或那样的事情而需要从一个城市到另外一个城市。旅途前,我们需要考虑旅途中的各个环节,比如说确定旅行方式(水、陆、空的选择),交通工具的选择及出行站点、出行车次(航班)等等。而把各种形式的数据按照自己的要求转换为SPSS格式数据,就好比我们从一个城市到另一个城市,而SPSS格式的数据就是我们的目的地。

和现实生活一样,利用Syntax将各种形式的数据转换为我们所需的SPSS格式数据也需要我们像旅途一样考虑一些细节问题。例如:我们从一个数据库文档中读取我们所需的数据,首先确定SPSS与数据库间采用何种连接方式(ODBC或JDBC),然后确定采集的数据来自何种数据库(Oracle,DB2,SQL SERVER,ACCESS等),接下来就是确定类似出发站点、车次等一系列细节问题。这样说来好像有点玄乎,下面将结合实例,看Syntax是如何一步一步的从数据库、EXCEL、TXT等格式文档中提取数据。
一、从数据库中读取数据
由于从数据库中读取数据需要输入的代码比较繁琐,一般来说先利用菜单向导操作,在结束前利用Paste将操作大致代码导入Syntax编辑窗口中,然后再根据自己的需要对代码做适当的修改。例如:
GET DATA ***告诉SPSS你此行的目的,得到数据***.
/TYPE=ODBC ***接下来就是选择海陆空了,omgd!是ODBC****.
/CONNECT= ***交通工具的选择及细节,利用交通工具将两地连起来就有了CONNECT***.
'DSN=Microsoft Access;DBQ=c:\mydocuments\dm_demo.mdb;'+ (通常这些细节都利用向导直接生成)
' DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;'
/SQL = 'SELECT * FROM CombinedTable'.
***上面安置完毕,到达目的地了,/SQL就好比你到目的地后所做之事***.
EXECUTE.
上面Syntax的作用是将ACCESS数据库中CombinedTable表中所有数据导入SPSS,上面Syntax语句中红色标注的可以说是此语句的核心部分,①、/connect子语句说明从何种数据库从提取数据及提取相关细节,此过程通常由向导生成,一般需要用时复制-粘贴即可;②、/SQL子语句相比/CONNECT语句则是重中之重,也是此次旅途的终极目的。如果从2个不同的表中选取变量,则是
/SQL =
'SELECT * FROM [table1],[table2]'
' WHERE [conditions]'.
还有select与group by,order by,having 等语句联合运用的情况,更多SQL语法知识则需参考数据库相关书籍(这也是目前许多公司要求做数据分析的懂数据库的原因之一)。
注:单纯从数据库中提取数据并不需要太多数据库知识,单纯了解SQL查询语言就可以了,个人建议读读《SQL循序渐进》。
二、从EXCEL格式文件中读取数据
利用Syntax语句从EXCEL中读取数据并没有太多的技巧,数据读取过程可以简单的分为2类,一类是读取单表数据,另一类则是读取多表数据(与从数据库中读取数据语法类似,只是/CONNECT语句稍有不同)。首先简单的说说第一类从单表中读取数据,例如:从我的文档中读取名叫data的EXCEL工作薄中表salary的[A3:H160]的数据,且将读取数据的第一行作为变量名,其Syntax代码如下:
get data ***①告诉SPSS,你的目的—得到数据(get data)***.
/type=xls ***②读的数据是什么类型(XLS OR XLSM<EXCEL2007>)***.
/file="C:/mydocuments/data.xls". ***③告诉SPSS文档的位置***.
/sheet=name 'salary' ***④告诉SPSS你要读取那个表(缺失时自动读取第一个表)***.
/cellrange=range 'A3:H160' ***⑤告诉SPSS你要读取表中那些数据***.
/readnames=on. ***⑥将读取数据的第一行设置为变量名***.
上面语法明确的表达你的意图,再联系我们在旅途中的种种行为,这个语句就轻而易举的被攻克了。值得一提的是,上面语句中的④⑤⑥三个子语句都可省略,省略后SPSS将从工作薄中第一个表读取所有数据,并将第一行默认为变量名,如果第一行为空,变量名则默认为VAR1,VAR2……,这一过程和利用菜单向导操作效果一样,下面说说怎样从多个表中读取数据,例如:
GET DATA
/TYPE=ODBC
/CONNECT=
'DSN=Excel Files;DBQ=c:\examples\data\sales.xls;' +
'DriverId=790;MaxBufferSize=2048;PageTimeout=5;'
/SQL =
'SELECT Location$.[Store Number], State, Region, City,'
' Power, Hand, Accessories,'
' Tires, Batteries, Gizmos, Dohickeys'
' FROM [Location$], [Tools$], [Auto$]'
' WHERE [Tools$].[Store Number]=[Location$].[Store Number]'
' AND [Auto$].[Store Number]=[Location$].[Store Number]'.
上面的代码和从数据库中读取表数据完全一样,只是在/CONNECT语句上做了些许变化,其他的并无区别,当然重点还是后面的提取数据变量语句/SQL,这里要说明的是如果提取变量字符中含有空格的话就需要用[ ]给框起来了,正如上面示例代码所示。 另外,不得不提的是从多表中读取数据较从单表中读取数据的一些局限性,比如不能像单表一样随意选择数据读取范围;读取表中的第一行非空字符都将强制读取为SPSS中的变量;变量类型较单一,只提供了数字和字符两种数据类型等等。
三、从TXT格式文件中读取数据
利用向导从TXT格式文件从读取数据有时候会因数据格式整洁而很方便,有时又会因为格式混乱而使你后面的分析工作变的麻烦,而利用代码则可以一次解决这种问题。通常读取文本格式数据语句分为get data和data list两种,采用何种语句完全凭个人喜好,当然两种方式各有所长,比如CSV文件或是很大的容量的文本数据用get data较data list就方便的多,而在处理程序内数据(begin data……end data)或结构相对较复杂的数据时用data list语句则较get data语句更方便些。根据文本数据格式,data list语句又有data list free/list/fixed之分,这里不便一一道来,通常一般的TXT格式的数据我们很少遇到,这里主要说说从网站数据库中导出的CSV格式的数据转换情况,例如,我们从网站中导出如下CSV格式的数据dara.csv:
ID,Name,Gender,Date Hired,Department
1,"Foster, Chantal",f,10/29/1998,1
2,"Healy, Jonathan",m,3/1/1992,3
3,"Walter, Wendy",f,1/23/1995,2
4,"Oliver, Kendall",f,10/28/2003,2
下面我们将像旅途一样将此csv格式的数据转换为我们所需的.sav格式,
get data ***①告诉SPSS,你的目的***.
/type=txt ***②告诉SPSS你要乘车还是坐船***.
/file='c:/mydocuments/data.csv' ***③找到车站码头***.
/delimiters= "," ***④司机强调路上安全(数据用","分隔)***.
/qualifier='" ' ***⑤司机介绍如何处理突发事故(比如数据中包含空格,逗号等特殊情况)***.
/arrangement=delimited ***⑥其他注意情况(限制情况)***.
/firstcase=2 ***⑦找到自己的座位(从第2行开始读取数据)***.
/variables= ID F3 Name A15 Gender A1
Date_Hired ADATE10 Department F1. ***⑧到了目的地确定适宜(设定变量名及格式)***.
此次Syntax旅途暂告一段落,当然还有许多其他格式的数据,这里不一一列举,但通常都可以像旅途一样实行转换目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01