京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么机器学习真的可以学到东西
开始跟《机器学习基石》这门课,相对于Stanford那门课,这门明显难度大很多,我跟到第10个Lecture,才刚刚讲到Logistic Regression。前面费了很大力气在讲机器什么时候可以学习,以及证明为什么能学习。
此文主要是基于《机器学习基石》的学习笔记。Topic是为什么机器可以学习?
机器学习最开始也是最终的目的是获得一个target function,喂进去数据能直接得到正确结论的函数。为了得到这个函数,我们需要一大堆的训练数据。然后通过一个好的机器学习算法,从一大堆可能的function(也就是H)中挑选一个比较好的function(也就是g),这个g和target function长得越像越好。
大家有没有想过,为什么这样就能学到东西。我们的算法只是在训练数据上跑,从训练数据跑出来的g,我们怎么能确定它也能在测试数据上跑的很好呢?这个就是问题的关键。其实接下来内容主要就是论证这个问题。
先来考虑一个简单的问题。比如说我们现在有一个黑罐子,里面有很多弹珠,只有两种颜色,黄的和绿的。好现在问你,你怎么能知道黄色弹珠大概有多少颗?
大家肯定都会说抽样。没错,我们抽出10个弹珠,很容易能知道黄色弹珠在sample中的比例。但是这个比例真的能代表罐子中的比例吗?也许能,也许不能。而且能的记录会随着我们sample数目的增大而增大。但是也有可能你抓出一把全绿。但这种情况发生的记录很小。这里我们有一个定理保证这种偏差发生的记录很小。
Hoeffding's inequality可以保证偏差很大发生的几率很小,并且随着N的增大很减小。公式如下,v代表sample中黄色弹珠的比例,μ表示罐子中黄色弹珠的比例。ϵ也就是偏差。
现在我们称v为Ein,μ为Eout,现在我们已经证明了Ein和Eout不会差的太远,更重要的事情是保重Ein越小越好,这就需要一个好的算法。
还记得上面的学习流程吗,我们的算法是从很多个h中去挑选一个Ein最小的h让它成为g。但是这里会有坏事情发生。
所谓的坏事情就是bad sample,就是说我们抽出了十个全是绿的弹珠。现在有一个好的h称之为h1,和坏的h叫h2,h1对于这个bad sample的表现当然是糟糕的,而恰好h2表现很好,那h2就被选成g了。
当出现坏事的时候,我们学习就会困难,可以直接说不能学习。所以这个坏事出现的概率是多少呢?把所有h中发生坏事的几率加起来。
从上图的式子中可以看到,坏事发生的几率和M有关。M也就是h的个数。
从现在的条件来看,如果M很大甚至无线的话那么Learning是不可行的。
真实的情况是M一般不会很大,请再仔细看看上一张图的推导,M是通过把所有的h坏事发生的概率加起来的,但是其实这些h不是互相独立的。所以这些h是有重复的,如下图。
比如说,我们想学习的target function是一条把x1分类成正负的线。现在h就有无数个,因为任意一条线都能分类,但是实际有意义的只有两种,分成正的和负的。
如果是两个点的话,实际有效的h就有4种,但是3个点就有可能不到8种了,因为会出现三点共线的情况。4个点的话按理说有16种,但是同样有一种情况不会发生,请看下图。
所以现在我们的公式就变成了这样,大大减小M的个数
现在我们给上面effective(N)一个称呼,叫做成长函数。也就是说,对于某一个输入D,H最多能够产生的多少种方程。注意是种类的数量。
这个所谓的种类我们也给一个定义叫做dichotomy,用来表示H对与D的二元分类情况。
好,现在问题的关键,就是H到底能把D分成多少个dichotomy。也就是它的成长函数到底是多少?
但是我们很难确定它的成长函数。但是好在我们拥有一个叫做break point的东西,这就是成长函数的上限。我们再看回上面分类的例子。
这里的输入为三个点就是一个break point。也就是说当输入N个点,H不能够把这个N个点的排列组合全部表示出来时(2^N),N就是一个break point。
当H能把N的全部组合表示出来时,说明这N个点被H给shatter掉了
我们用B(N,k)来表示当输入N个点时,H可以最多产生多少个dichotomy。
通过数学归纳法我们可以证明到
现在到了最后一步,除了把上边那个成长函数的上限代入进去之外,还需要进行一系列的变形,这些变形需要很强的数学能力和概率上面的知识,我自己都不太懂,况且我觉得大部分人都不需要了解。这里我就略过,有兴趣的强人自己google咯。
最终的式子如下
好了,现在我们终于能说机器学习确实可以学到东西了。但是需要满足三个条件。
这三者的关系如下图。
dvc = k - 1,大致上可以把它看出theta的维度加1
上图很清晰的说明,并不是说你的模型搞得很复杂,算法弄得很好,就能学好,反而是取到一个折中的点,这样的学习才最有效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11