
为什么机器学习真的可以学到东西
开始跟《机器学习基石》这门课,相对于Stanford那门课,这门明显难度大很多,我跟到第10个Lecture,才刚刚讲到Logistic Regression。前面费了很大力气在讲机器什么时候可以学习,以及证明为什么能学习。
此文主要是基于《机器学习基石》的学习笔记。Topic是为什么机器可以学习?
机器学习最开始也是最终的目的是获得一个target function,喂进去数据能直接得到正确结论的函数。为了得到这个函数,我们需要一大堆的训练数据。然后通过一个好的机器学习算法,从一大堆可能的function(也就是H)中挑选一个比较好的function(也就是g),这个g和target function长得越像越好。
大家有没有想过,为什么这样就能学到东西。我们的算法只是在训练数据上跑,从训练数据跑出来的g,我们怎么能确定它也能在测试数据上跑的很好呢?这个就是问题的关键。其实接下来内容主要就是论证这个问题。
先来考虑一个简单的问题。比如说我们现在有一个黑罐子,里面有很多弹珠,只有两种颜色,黄的和绿的。好现在问你,你怎么能知道黄色弹珠大概有多少颗?
大家肯定都会说抽样。没错,我们抽出10个弹珠,很容易能知道黄色弹珠在sample中的比例。但是这个比例真的能代表罐子中的比例吗?也许能,也许不能。而且能的记录会随着我们sample数目的增大而增大。但是也有可能你抓出一把全绿。但这种情况发生的记录很小。这里我们有一个定理保证这种偏差发生的记录很小。
Hoeffding's inequality可以保证偏差很大发生的几率很小,并且随着N的增大很减小。公式如下,v代表sample中黄色弹珠的比例,μ表示罐子中黄色弹珠的比例。ϵ也就是偏差。
现在我们称v为Ein,μ为Eout,现在我们已经证明了Ein和Eout不会差的太远,更重要的事情是保重Ein越小越好,这就需要一个好的算法。
还记得上面的学习流程吗,我们的算法是从很多个h中去挑选一个Ein最小的h让它成为g。但是这里会有坏事情发生。
所谓的坏事情就是bad sample,就是说我们抽出了十个全是绿的弹珠。现在有一个好的h称之为h1,和坏的h叫h2,h1对于这个bad sample的表现当然是糟糕的,而恰好h2表现很好,那h2就被选成g了。
当出现坏事的时候,我们学习就会困难,可以直接说不能学习。所以这个坏事出现的概率是多少呢?把所有h中发生坏事的几率加起来。
从上图的式子中可以看到,坏事发生的几率和M有关。M也就是h的个数。
从现在的条件来看,如果M很大甚至无线的话那么Learning是不可行的。
真实的情况是M一般不会很大,请再仔细看看上一张图的推导,M是通过把所有的h坏事发生的概率加起来的,但是其实这些h不是互相独立的。所以这些h是有重复的,如下图。
比如说,我们想学习的target function是一条把x1分类成正负的线。现在h就有无数个,因为任意一条线都能分类,但是实际有意义的只有两种,分成正的和负的。
如果是两个点的话,实际有效的h就有4种,但是3个点就有可能不到8种了,因为会出现三点共线的情况。4个点的话按理说有16种,但是同样有一种情况不会发生,请看下图。
所以现在我们的公式就变成了这样,大大减小M的个数
现在我们给上面effective(N)一个称呼,叫做成长函数。也就是说,对于某一个输入D,H最多能够产生的多少种方程。注意是种类的数量。
这个所谓的种类我们也给一个定义叫做dichotomy,用来表示H对与D的二元分类情况。
好,现在问题的关键,就是H到底能把D分成多少个dichotomy。也就是它的成长函数到底是多少?
但是我们很难确定它的成长函数。但是好在我们拥有一个叫做break point的东西,这就是成长函数的上限。我们再看回上面分类的例子。
这里的输入为三个点就是一个break point。也就是说当输入N个点,H不能够把这个N个点的排列组合全部表示出来时(2^N),N就是一个break point。
当H能把N的全部组合表示出来时,说明这N个点被H给shatter掉了
我们用B(N,k)来表示当输入N个点时,H可以最多产生多少个dichotomy。
通过数学归纳法我们可以证明到
现在到了最后一步,除了把上边那个成长函数的上限代入进去之外,还需要进行一系列的变形,这些变形需要很强的数学能力和概率上面的知识,我自己都不太懂,况且我觉得大部分人都不需要了解。这里我就略过,有兴趣的强人自己google咯。
最终的式子如下
好了,现在我们终于能说机器学习确实可以学到东西了。但是需要满足三个条件。
这三者的关系如下图。
dvc = k - 1,大致上可以把它看出theta的维度加1
上图很清晰的说明,并不是说你的模型搞得很复杂,算法弄得很好,就能学好,反而是取到一个折中的点,这样的学习才最有效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13