京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么机器学习真的可以学到东西
开始跟《机器学习基石》这门课,相对于Stanford那门课,这门明显难度大很多,我跟到第10个Lecture,才刚刚讲到Logistic Regression。前面费了很大力气在讲机器什么时候可以学习,以及证明为什么能学习。
此文主要是基于《机器学习基石》的学习笔记。Topic是为什么机器可以学习?
机器学习最开始也是最终的目的是获得一个target function,喂进去数据能直接得到正确结论的函数。为了得到这个函数,我们需要一大堆的训练数据。然后通过一个好的机器学习算法,从一大堆可能的function(也就是H)中挑选一个比较好的function(也就是g),这个g和target function长得越像越好。
大家有没有想过,为什么这样就能学到东西。我们的算法只是在训练数据上跑,从训练数据跑出来的g,我们怎么能确定它也能在测试数据上跑的很好呢?这个就是问题的关键。其实接下来内容主要就是论证这个问题。
先来考虑一个简单的问题。比如说我们现在有一个黑罐子,里面有很多弹珠,只有两种颜色,黄的和绿的。好现在问你,你怎么能知道黄色弹珠大概有多少颗?
大家肯定都会说抽样。没错,我们抽出10个弹珠,很容易能知道黄色弹珠在sample中的比例。但是这个比例真的能代表罐子中的比例吗?也许能,也许不能。而且能的记录会随着我们sample数目的增大而增大。但是也有可能你抓出一把全绿。但这种情况发生的记录很小。这里我们有一个定理保证这种偏差发生的记录很小。
Hoeffding's inequality可以保证偏差很大发生的几率很小,并且随着N的增大很减小。公式如下,v代表sample中黄色弹珠的比例,μ表示罐子中黄色弹珠的比例。ϵ也就是偏差。
现在我们称v为Ein,μ为Eout,现在我们已经证明了Ein和Eout不会差的太远,更重要的事情是保重Ein越小越好,这就需要一个好的算法。
还记得上面的学习流程吗,我们的算法是从很多个h中去挑选一个Ein最小的h让它成为g。但是这里会有坏事情发生。
所谓的坏事情就是bad sample,就是说我们抽出了十个全是绿的弹珠。现在有一个好的h称之为h1,和坏的h叫h2,h1对于这个bad sample的表现当然是糟糕的,而恰好h2表现很好,那h2就被选成g了。
当出现坏事的时候,我们学习就会困难,可以直接说不能学习。所以这个坏事出现的概率是多少呢?把所有h中发生坏事的几率加起来。
从上图的式子中可以看到,坏事发生的几率和M有关。M也就是h的个数。
从现在的条件来看,如果M很大甚至无线的话那么Learning是不可行的。
真实的情况是M一般不会很大,请再仔细看看上一张图的推导,M是通过把所有的h坏事发生的概率加起来的,但是其实这些h不是互相独立的。所以这些h是有重复的,如下图。
比如说,我们想学习的target function是一条把x1分类成正负的线。现在h就有无数个,因为任意一条线都能分类,但是实际有意义的只有两种,分成正的和负的。
如果是两个点的话,实际有效的h就有4种,但是3个点就有可能不到8种了,因为会出现三点共线的情况。4个点的话按理说有16种,但是同样有一种情况不会发生,请看下图。
所以现在我们的公式就变成了这样,大大减小M的个数
现在我们给上面effective(N)一个称呼,叫做成长函数。也就是说,对于某一个输入D,H最多能够产生的多少种方程。注意是种类的数量。
这个所谓的种类我们也给一个定义叫做dichotomy,用来表示H对与D的二元分类情况。
好,现在问题的关键,就是H到底能把D分成多少个dichotomy。也就是它的成长函数到底是多少?
但是我们很难确定它的成长函数。但是好在我们拥有一个叫做break point的东西,这就是成长函数的上限。我们再看回上面分类的例子。
这里的输入为三个点就是一个break point。也就是说当输入N个点,H不能够把这个N个点的排列组合全部表示出来时(2^N),N就是一个break point。
当H能把N的全部组合表示出来时,说明这N个点被H给shatter掉了
我们用B(N,k)来表示当输入N个点时,H可以最多产生多少个dichotomy。
通过数学归纳法我们可以证明到
现在到了最后一步,除了把上边那个成长函数的上限代入进去之外,还需要进行一系列的变形,这些变形需要很强的数学能力和概率上面的知识,我自己都不太懂,况且我觉得大部分人都不需要了解。这里我就略过,有兴趣的强人自己google咯。
最终的式子如下
好了,现在我们终于能说机器学习确实可以学到东西了。但是需要满足三个条件。
这三者的关系如下图。
dvc = k - 1,大致上可以把它看出theta的维度加1
上图很清晰的说明,并不是说你的模型搞得很复杂,算法弄得很好,就能学好,反而是取到一个折中的点,这样的学习才最有效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27