
大数据未来将呈现的八大发展趋势
趋势一:数据的资源化
何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
趋势二:与云计算的深度结合
大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
趋势三:科学理论的突破
随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
趋势四:数据科学和数据联盟的成立
未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。
趋势五:数据泄露泛滥
未来几年数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到安全保障。可以说,在未来,每个财富500强企业都会面临数据攻击,无论他们是否已经做好安全防范。而所有企业,无论规模大小,都需要重新审视今天的安全定义。在财富500强企业中,超过50%将会设置首席信息安全官这一职位。企业需要从新的角度来确保自身以及客户数据,所有数据在创建之初便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全措施已被证明于事无补。
趋势六:数据管理成为核心竞争力
数据管理成为核心竞争力,直接影响财务表现。当“数据资产是企业核心资产”的概念深入人心之后,企业对于数据管理便有了更清晰的界定,将数据管理作为企业核心竞争力,持续发展,战略性规划与运用数据资产,成为企业数据管理的核心。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关;此外,对于具有互联网思维的企业而言,数据资产竞争力所占比重为36.8%,数据资产的管理效果将直接影响企业的财务表现。
趋势七:数据质量是BI(商业智能)成功的关键
采用自助式商业智能工具进行大数据处理的企业将会脱颖而出。其中要面临的一个挑战是,很多数据源会带来大量低质量数据。想要成功,企业需要理解原始数据与数据分析之间的差距,从而消除低质量数据并通过BI获得更佳决策。
趋势八:数据生态系统复合化程度加强
大数据的世界不只是一个单一的、巨大的计算机网络,而是一个由大量活动构件与多元参与者元素所构成的生态系统,终端设备提供商、基础设施提供商、网络服务提供商、网络接入服务提供商、数据服务使能者、数据服务提供商、触点服务、数据服务零售商等等一系列的参与者共同构建的生态系统。而今,这样一套数据生态系统的基本雏形已然形成,接下来的发展将趋向于系统内部角色的细分,也就是市场的细分;系统机制的调整,也就是商业模式的创新;系统结构的调整,也就是竞争环境的调整等等,从而使得数据生态系统复合化程度逐渐增强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13