
不懂数据挖掘,内容营销等于零
随着内容营销市场份额的持续扩大,我们听到了很多关于内容营销的话题,说内容营销与传统广告多么不同。随着这些年广告的发展,企业和品牌依旧面临着“如何接触到目标客户”的困扰。消费者知道他们每天都被各种传统广告包围着,这些广告有些会被客户关注,有些则被忽视。在广告的发展历史中,没有消费者打开他们的数字设备是为了寻找广告,通过广告来接触一个品牌的。他们所寻找的,永远是精彩的内容。这就是内容营销的核心;企业和品牌可以在目标消费者已经习惯接触的内容中与消费者沟通。
这里有一个案例可以说明内容营销与传统广告的不同,尽管,通常来说,在广告及时性上来说,内容营销的广告要远远落后于传统展示广告。通过内容营销平台的帮助,创造营销内容已经不再是挑战。事实上,在内容营销工具的帮助下我们已经可以简单快捷的创造内容营销的软文,我们不再为了探寻适合消费者的营销内容而被压得喘不过气来。现在,我们可以很方便的区分出内容营销和传统广告。在传统广告的时代,在尽可能多的页面展示尽可能多的Banner广告似乎就是很好的方法了。(提醒:这其实不是一个好主意)
通过更多展示来促进效果的传统广告也开始意识到,要取得更好的广告效果,并不是更多的展示广告,而是更多能接触到目标客户的广告。在当今数字生活环境中,内容营销者拓宽他们的思维比创造内容更重要。他们需要用独特的策略来营造易于受众接受的氛围,以及收集所有受众的反应到分析漏斗中。
总之,品牌需要采取更多的数据挖掘的方法来开展内容营销。内容营销也许看上去和数字广告很不同,但是他的后台却需要像当今的智能广告投放(programmatic ad,也称程序化购买,一种新兴广告技术,由电脑根据大数据来智能的为客户选择网络广告投放)一样,才能使品牌在数字时代取得成功。这意味着需要获取智能广告技术所需要的海量消费者数据,从而来理解和预测消费者行为,再利用智能广告技术,就可以用更相关的、有意义的方式来瞄准目标客户。
数据挖掘方法的使用,是更好的接触消费者,带动整个内容营销行业到达下一个时代的关键。我们有内容,而且数据就在我们的指尖。那么,对于内容营销者来说下一步就是像显示广告那样利用数据。智能广告投放平台快速的筛选数据,深入洞察消费者行为,从而实时锁定目标客户。如果内容营销者能够充分利用智能广告投放平台,那么其精准营销的能力和实时传递内容的能力都将得到很大提升。这样就能确保目标客户,在正确的时间,正确的地点看到和他们最相关、最有趣和最具冲击力的营销内容。数字广告界熟知这种方式,也从中获取了大量回报。现在,想想智能广告投放技术所能达到的效率,你就会感到兴奋。
智能广告投放技术,应用好时,能够提供有效的解决方案,帮助营销者在顾客购买过程中的每一步提供给消费者相关和有用的信息。这种技术在内容营销中是非常有价值的。这同时需要智能广告投放平台自身也更完善,从而更好的利用数据在任何给定的时间锁定客户的位置。内容营销者通常从客户是否第一次浏览软文,是否表现出对品牌的兴趣,是否最近购买过商品来发现用户需求。现在,打破内容营销者这种静态的思维方式至关重要,不是从内容营销者的既有角度出发,而是从顾客的角度出发,通过顾客的全方位数据分析,去发现顾客需求和顾客感兴趣的内容。
内容营销从大数据数字广告中学习如何利用智能广告投放技术是一件事,内容营销的内容到底如何呈现则是另外一件事。智能广告投放技术能够有效帮助数字广告发现展示地点是因为网络上存在大量可利用的广告位置。对于定制的营销内容,每一条我们都想尽办法使其与消费者相关,对消费者有用,如何能让内容更有影响力,然后我们还要思考用何种技术方案才能让智能广告投放技术将营销内容有效投递。
为了内容营销的成功与繁荣,我们需要翻越内容营销的高山,以及使用数据挖掘技术更好的传递内容到那些希望看到该内容的用户,而且还要在正确的时间传递给他们。为了使之发生,我们必须利用智能广告投放技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11