
大数据是把双刃剑,关键看怎么用
在大数据影响下,传统美术教育的模式、内涵和定位受到了很大的冲击。美术教育会有怎样一个新发展空间,未来的美术教育会变成什么样,这是很多教育工作者关心的问题。
韦天瑜说,“目前的冲击可以看到一些表面的现象,比如说我们的网对网,多大程度能替代课堂的面对面;今天网上自由地选择老师,多大程度上能替代我们课堂里的因材施教;网上的虚拟展厅,多大程度能够替代美术馆的现场审美。你到虚拟展厅里去感受,可以突破时间、空间的限制,可以感受到大师的作品,但是大师的气场、风采和现场的感受可能没有,这里面都存在一些矛盾。”
从目前来看,大数据在中国美术教育的实际应用中还不太广泛。中国美协少儿艺委会主任、首都师范大学教授尹少淳举例说:“大数据最初的用处是在商业上,比如在西方有些国家,通过海量的数据统计显示,很多男人去买尿布的时候,顺便会买啤酒。于是在商业运作上,商场就会把啤酒和尿布的柜台放在一起。但是大数据时代最大的问题就是它不讲因果关系,比如为什么会同时买啤酒和尿布,大数据本身不提供原因,要问为什么,是社会学的问题。那么我们如何把大数据应用到美术教育上?这是一个比较新的课题。”
大数据是要有海量的数据,但这个数据的量我们现在还没有做到那么大。尹少淳认为,大数据将来的应用主要是在预测上,以及一种趋势的判断上。这种趋势是两方面的,一个是大家都做,我也可以这样做;另一个是回避,你这样做,我就不这样做。我们可以从大数据中预测教学的方向,包括学生在关注的问题、老师关注的问题,或者显示老师的缺陷,提示老师需要什么东西。当然,这种预测也会带来一定的问题,比如可以去迎合某种趋势,反而阻碍了创意的发展。所以大数据是一把双刃剑,关键是怎么去运用它。”
尽管我们都看到大数据分析带来的双刃剑般的正面冲击和负面影响,但这跟大数据造成的“线上一天线下千年”的变革相比,那些负面的影响显得微不足道。韦天瑜说,“我们必须好好来探讨大数据给予我们的非常多的可能性。但是回过头来,我们的传统美术教育不能因此就否定了。传统美术教育有工业时代留下的特征,它有统一的时刻、统一的学年、统一的考试分数、统一的教学内容与教学要求,至少它将长期存在,因为它跟社会有千丝万缕的关系。中国的美术教育在今天还是非常薄弱的。我们的整个社会对审美人格的培养是薄弱的,是有缺陷的。中国有几千年的文化传统,但是它有个问题就是如何跟当代的文化接轨。我认为这些东西还需要我们来共同推动。从现在开始,我们能做的就是慢慢融合,不能一蹴而就。现在大数据带来的是新的传播方式、新的认知方式、新的沟通方式。我认为美术的生存空间跟它的审美方式已经进行了改变,但未来怎么样我们很难预测,还需要大家共同努力。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11