
浅谈网络游戏中新用户首日流失的数据分析
网游的用户流失主要集中在新增日,因此本文只谈新玩家的首日流失。
首先,直接上一个简单的图表:
文中所有表中填充的均非真实数据,乃为半随机填充,可能有不合常理的地方,亦有可能影响结论。
下表为某游戏某日新注册玩家在当天的游戏情况,即进度最快的一批玩家到了“任务3”节点。
备注:
1、离开人数:指新玩家首日达到某游戏节点后下线的人数。
2、次日留存:指首日在各节点离开玩家的次日留存。
3、不同游戏各节点顺序不一,如《女神联盟》先有部分新手引导,然后才创建角色。
4、模块加载遍布整个游戏,但是创建角色前的模块加载流失尤为突出,为重点考察对象。
5、①为首日各节点的留存情况 ②为各节点离开的玩家的次日留存情况。
上面表是从首日着手,下表从次日着手。
也就是看看次日流失的这些玩家首日都是在哪个节点下的线,即在哪个节点下线的玩家流失严重。
如表:
备注:流失占比指各节点流失人数占总流失人数的比例。
这样看起来没有明显的问题,“任务3”流失最严重,那我们再补上留存人数及留存占比作为对比。
备注:
1、留存占比指各节点留存人数占总留存人数的比例,即流失占比与留存占比两者之间没有直接关系。
2、流失人数+留存人数=(第一张表中的)离开人数
这样看的话,流失占比最高的节点“任务3”同时也是留存占比最高的节点,所以不能说明哪个节点流失更严重。
那么,我们刨除“任务3”这个特殊节点,会不会显示出合理的规律呢?也不行,图我就不再做了。
看来还是这个逻辑行不通。
稍作总结:图中①②③表示三个观测流失点的指标,经分析③的参考价值不大,①和②互相补充。
然后,我们也可以将上面的节点分布,改为游戏时长分布、等级分布等。
时长分布:
等级分布同理,就不做图了。
想起之前一个运营策划给我说,他想知道次日留存玩家的首日平均游戏时长,然后想办法做活动拖住用户,让大家都达到那个游戏时长,以提高次留。
我说:其实这是没有临界点的,不是到了一个临界点就留存,不到就流失。
留存率是随着游戏时长(游戏进度,游戏等级)的增长而递增的,按照这个原理就是拖时间越长越好,拖24小时最棒。
但是如果你的游戏玩家必须玩很长时间才能不掉队的话,玩家却可能就因此而流失了,即“留存没有临界点,流失却或许有个临界点。。。”。
通过以上数据基本可以看到:
玩家是因为游戏某个模块加载失败或加载时间过长而流失,还是创建角色时就失去兴致,还是在新手引导阶段就对游戏玩法失望,还是因为某个任务难以完成,还是在某个等级遇到不好的体验,还是在某节点遇到BUG等。这些流失原因均为硬伤,硬伤好治。
但是光解决这些硬伤是远远不够的,提高游戏软的实力才是根本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11