
这四件事让你走出深陷的数据分析迷宫
通过真实世界中的实例,我们将共同通过种种错误的数据分析方式总结出正确的技巧与诀窍。
相信每位朋友都遇到过这样的情况:将来自各类渠道的数据收集起来,通过A/B测试进行验证,希望借此得出分析结论。但在检查结果时,我们发现这些数字似乎并不怎么合理。事实上,数据验证也是我们日常工作中的重要环节,而且与编码一样需要大量追踪与调试。在今天的文章中,我们将共同通过真实世界中的实例,在对种种错误的数据分析方式的总结中找出正确的技巧与诀窍。
别急着做出假设
感觉上是对的,并不代表就真是对的。我们的大脑常常具有误导性。我发现很多分析师都因这种失误而身陷分析迷宫。
下面来看一种常见的问题:变更聚合查询。
先看以下两行查询:
乍看起来,很多人会认为这两条查询的含义是完全一致的。左侧的查询只是包含了额外的几列,对吧?但事实并非如此。左侧查询中包含5个聚合层级,而右侧的只有2个。左侧的查询返回的总和数字更小,因为其定义更为明确。如果将其作为分析流程中的组成部分,那么不同的结果会给后续分析造成严重影响。
聚合错误是一类非常常见的问题,因此即使对自己的思路很有信心,大家也请务必再检查一遍。
Snapshot(快照)问题
过去四年当中,身为分析师与教师的从业经历让我意识到一大常见数据错误的起源:snapshot表。这类数据表面向特定时间段(每月、每周、每日),旨在保存对应时间点的数字化快照。
无论原因为何,这类表确实难倒了很多人。首先,这类表往往很难理解,这意味着刚刚接触此类表的用户无法立即意识到其属于snapshot表,直接导致用户对数据进行错误运用。最简单的预防办法就是为其设置明确的名称,告知用户其属于snapshot类型。
我们该如何识别出snapshot表并找出其使用方法?最明确的标志就是,snapshot表中的全部指标往往都较平均值有所夸大。大家可能曾经把周快照当成日快照处理,并发现其结果比预期值大5到7倍——幸运的是,这种错误还是很容易发现的。大家可以将其拆分成一天,例如时段中的最后一天,或者干脆取其中的最大值。具体参考以下示例:
选定一天:
找到最大值
关键在于坚持以同一种方法使用snapshot表。根据实际背景与目标,我们可以选择最为有效的具体处理办法。
总结模式:
在验证数据有效性时,我发现总结其中的模式能够有效识别错误。具体问题包括:
•是否全部数据皆受到影响?
•受影响数据是否全部来自同样的群组?
•区别间呈正相关状态,抑或各自随机?
•数据之中是否存在某些模式?
这些问题有助于缩小思考范围。如果全部数据皆受到影响,则问题往往源自脚本或查询,而非数据本身。但如果某月或某日的值明显较低,则需要调查基础数据,这意味着该时段内的数据收集机制可能存在错误。
如果所验证的数据往往以等比例方式低于原始数据,可能意味着部分数据没能被聚合查询所正常收集。而基本逻辑错误则往往令分析结果呈现“随机性”,意味着其中没有明显的模式。
从头开始进行梳理
如果尝试了一切办法但仍然无法确定问题,那么只能进行深入挖掘了。虽然从直观上讲,我们都希望能够从出错的位置开始推进,但现在大家需要安下心来从头开始梳理。
数据中的错误往往最初尚属于良性范畴,但随着分析流程推进而变得愈发糟糕。这就像是在解数学题,我们要从头开始再推导一遍。这项工作可能费时费力,但却能够以清晰的思路帮助大家了解数据是如何一步步走偏并最终带来完全不可理解的结论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11