京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这四件事让你走出深陷的数据分析迷宫
通过真实世界中的实例,我们将共同通过种种错误的数据分析方式总结出正确的技巧与诀窍。
相信每位朋友都遇到过这样的情况:将来自各类渠道的数据收集起来,通过A/B测试进行验证,希望借此得出分析结论。但在检查结果时,我们发现这些数字似乎并不怎么合理。事实上,数据验证也是我们日常工作中的重要环节,而且与编码一样需要大量追踪与调试。在今天的文章中,我们将共同通过真实世界中的实例,在对种种错误的数据分析方式的总结中找出正确的技巧与诀窍。
别急着做出假设
感觉上是对的,并不代表就真是对的。我们的大脑常常具有误导性。我发现很多分析师都因这种失误而身陷分析迷宫。
下面来看一种常见的问题:变更聚合查询。
先看以下两行查询:
乍看起来,很多人会认为这两条查询的含义是完全一致的。左侧的查询只是包含了额外的几列,对吧?但事实并非如此。左侧查询中包含5个聚合层级,而右侧的只有2个。左侧的查询返回的总和数字更小,因为其定义更为明确。如果将其作为分析流程中的组成部分,那么不同的结果会给后续分析造成严重影响。
聚合错误是一类非常常见的问题,因此即使对自己的思路很有信心,大家也请务必再检查一遍。
Snapshot(快照)问题
过去四年当中,身为分析师与教师的从业经历让我意识到一大常见数据错误的起源:snapshot表。这类数据表面向特定时间段(每月、每周、每日),旨在保存对应时间点的数字化快照。
无论原因为何,这类表确实难倒了很多人。首先,这类表往往很难理解,这意味着刚刚接触此类表的用户无法立即意识到其属于snapshot表,直接导致用户对数据进行错误运用。最简单的预防办法就是为其设置明确的名称,告知用户其属于snapshot类型。
我们该如何识别出snapshot表并找出其使用方法?最明确的标志就是,snapshot表中的全部指标往往都较平均值有所夸大。大家可能曾经把周快照当成日快照处理,并发现其结果比预期值大5到7倍——幸运的是,这种错误还是很容易发现的。大家可以将其拆分成一天,例如时段中的最后一天,或者干脆取其中的最大值。具体参考以下示例:
选定一天:
找到最大值
关键在于坚持以同一种方法使用snapshot表。根据实际背景与目标,我们可以选择最为有效的具体处理办法。
总结模式:
在验证数据有效性时,我发现总结其中的模式能够有效识别错误。具体问题包括:
•是否全部数据皆受到影响?
•受影响数据是否全部来自同样的群组?
•区别间呈正相关状态,抑或各自随机?
•数据之中是否存在某些模式?
这些问题有助于缩小思考范围。如果全部数据皆受到影响,则问题往往源自脚本或查询,而非数据本身。但如果某月或某日的值明显较低,则需要调查基础数据,这意味着该时段内的数据收集机制可能存在错误。
如果所验证的数据往往以等比例方式低于原始数据,可能意味着部分数据没能被聚合查询所正常收集。而基本逻辑错误则往往令分析结果呈现“随机性”,意味着其中没有明显的模式。
从头开始进行梳理
如果尝试了一切办法但仍然无法确定问题,那么只能进行深入挖掘了。虽然从直观上讲,我们都希望能够从出错的位置开始推进,但现在大家需要安下心来从头开始梳理。
数据中的错误往往最初尚属于良性范畴,但随着分析流程推进而变得愈发糟糕。这就像是在解数学题,我们要从头开始再推导一遍。这项工作可能费时费力,但却能够以清晰的思路帮助大家了解数据是如何一步步走偏并最终带来完全不可理解的结论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09