京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CRM系统是如何完成商业数据分析的
在风口上,猪都会飞”的互联网时代,企业还没借助OA、ERP、CRM 系统等等这样的工具帮助企业提高效果,那真有点OUT,大数据的时代,再不会运用CRM系统商业数据分析功能做大数据分析,那也快OUT了。
其实我们平时所说的商业分析,数据分析的商业感觉到底是神马,它并不是什么很高深的理论或者别人捉摸不透的玩意。不是具体的结果,而是我们的分析的思维方式。
我们应该都听过「数据分析师不是数羊」的故事,如果你通过各种工具和技术计算了羊群里有1000只羊,然后告诉放羊的牧民时,这只是告诉了一个他知道的数字。
如果你告诉他,我们现在羊群有1000只羊,900只是母羊,100只是公羊。然后根据羊的特征不同,有300只是“非常能吃的”、100只是“非常能长的”、400只是“正常生羊崽的”。那么牧民会高兴,高兴的是你告诉了他一些一眼看不出来的信息,而又会有些遗憾,遗憾的是“然并卵!”
如果你告诉他,我们现在有1000只羊,900只母羊、100只公羊,严重的羊群性别比例失调,当务之急是引进更多的公羊。根据市场预估的情况,5月份买羊比4月份买羊便宜,所以4月份可以多卖掉母羊,5月份引进公羊。牧民听到这个建议,大喜!(这就是大数据分析的核心价值和意所在)
我们做数据分析,一定要从一个只是统计数据,到分析数据,再到解决实际问题,最终创造价值!
统计数据=>>分析数据=>>解决问题=>>创造价值
商业数据分析,从概念来说要一分为二:1.商业。2.数据分析
你要问我商业是什么?不好意思,我真没办法具体回答!
有人说是赚钱,有人说是业务,有人说是企业之间的合作,有人说是人心,也有人说是为社会创造价值!
更愿意定义成,我们平时所做得业务分析是什么。是明白实际的业务是怎么回事,从而解决业务中得痛点问题,这个痛点问题不是你自己发现的,而是业务告诉你的。而这个解决痛点问题的方法,不是别人告诉你的,而是你发现的。
我们还是来看CRM系统是如何完成数据分析的。
一、数据统计
CRM系统是如何完成数据统计的呢?这很简单,当我们在使用CRM系统的时候,这个无形就是在积累数据,CRM系统就在统计的数据。比如:客户管理:360度无死角录入客户信息;订单管理:记录公司所有的订单信息;项目管理:公司所有项目流程信息;产品管理:完整的产品信息及销售情况;业绩管理:财务人员录入的所有销售业绩;这些数据不断的积累,CRM系统已在无形中完成了数据积累统计的过程。
二、数据分析
当企业在运营过程中,总会或多或少碰到些问题,那么如何找到问题的根源呢?找到问题根源,才是根本解决问题的办法。那么数据分析就发挥着重要的作用了。比如某个月业绩下滑严重(可以从数据分析的业绩曲线明显看出),接下来怎么办?当然不能胡乱猜测,这时就要做数据分析了,用数据说话。首先分析每个销售员的业绩情况,同比上月,是否有巨大下滑?有,个例,那么是销售员本身的问题比较大;如果普通存在,可能市场原因,或者产品本身存在问题;那么接下来还可以从单个产品的销售曲线同比上个月的曲线进行分析,这也可以很直观的看出,是否是产品出现问题;这些都没有问题,还可以再从推广数据进行分析,总之可以从数据分析中,找到问题的根本原因。
三、解决问题
在数据分析步骤中已找到了问题的根本原因,那么接下来就好办了,根据存在的问题,去解决它。销售员自身的问题,那么就从销售人员开始,分析他业绩下滑的原因,并解决;如果是产品问题,那就分析产品,分析阻碍用户购买的原因,如产品缺陷?那就改进产品;如果是推广的问题,如投入少了?渠道出问题了?那就加大投入,拓展渠道、优化渠道合作等等。
四、创造价值
这个也就顺理成章了,完成了以上几大步骤,那创造价值也就顺理成章了。而且这么多的数据,我们在分析用户的结果中,一定可以看到用户的喜爱习惯等,这样我们就可以更深入的了解用户,为用户提供更好更适合的产品及服务,还可以从用户的喜好中创新新的产品或服务,为企业提高竞争力,为企业、为用户创造价值。
不以解决问题为目的的分析都是耍流氓,在我们做商业数据分析时,我们重复一遍,这个步骤:数据统计==>>数据分析==>>解决问题==>>创造价值。对商业数据分析这个问题,你有更好的意见或建议,欢迎补充。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06