京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用降维方法解读数据分析
随着互联网技术的不断发展,数据呈现出规模大、维度高、结构复杂等特性,人们收集和获得数据的能力也逐渐增强。如何充分利用海量数据、挖掘其中有价值的知识和内容以指导实际生产是科研人员、工程技术人员及各管理层领导所研究及关注的焦点。数据降维能够加快算法执行的速度,同时也能提高分析模型的性能,降低数据的复杂度,缓解“信息丰富、知识贫乏”的现状。
1. 主成分分析
主成分分析(PCA:Principal Component Analysis)是最常用的线性降维方法,它是通过正交变换将高维的数据映射到低维的空间中,并期望在所投影的维度上达到数据方差最大的效果。主成分分析在降维时只需要保留前m(m
2. 反向特征消除
在这个方法中,每进行一次降维操作,都采用n-1个特征对分类器训练n次,得到新的 n 个分类器。将新分类器中错分率变化最小的分类器所用的 n-1 维特征作为降维后的特征集。并且不断地对该过程进行迭代,最终便可得到降维后的结果。
3.前向特征构造
前向特征构建与反向特征消除是互逆过程。前向特征从1个特征开始构造,每次进行训练时,都会添加一个让分类器性能幅度提升最大的特征。由于前向特征构造和反向特征消除操作起来较为耗时,因此它们通常用于输入维数相对较低的数据集。
4. 缺失值比率
当一组数据存在太多缺失值导致有用的信息较少时,可以用到缺失值比率这一方法来进行降维,可以把数据列中缺失值大于某个阈值(可自行设定)的列去掉。阈值越高,降维方法则会更便捷,降维越少。
5. 高相关滤波
高相关滤波的原理是:当两列数据的变化趋势相近时,它们所包含的信息也相似。这样一来,相似列中的其中一列便可满足机器学习模型。数值列之间的相似性可以通过计算相关系数来表示,名词列的相关系数可以通过计算皮尔逊卡方值来表示。相关系数大于某个阈值的两列只保留一列。由于其相关系数对范围敏感,所以同主成分分析类似,在计算之前也需要对数据进行归一化处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12