
整合大数据价值最大化的三个关键因素
在过去的几年里,人们从知道大数据的概念,发展到一些组织能够真正实施一些大数据项目。然而,在一些组织的数据中心团队负责实施这些业务驱动的举措之后,现在才开始认识到实现真正大数据集成的复杂性和深度。
大数据通过人们生活,工作平台,应用程序,以及设备提供了多种格式的大量的数据。大量的结构化和非结构化的内容往往使用户非常难以访问和分析所需的信息。
现代数据中心往往是一个复杂的系统,相互连接的服务器和设备存储,处理和分发各种来源的大量信息。但智能大数据整合,在改造传统的信息系统,可以缓解从地理位置分散的网站,甚至其他数据中心的聚集和分析信息的斗争。
现代数据中心趋向于储存,处理互联服务器和设备的一个复杂的系统,以及大量的信息分发和从各种来源。但聪明的大数据整合,重塑传统IT系统,可以缓解汇总和分析来自地理上分散的地点,甚至其他的数据中心信息的斗争。
如果一个数据中心是一个组织的大脑,那么可以认为其数据源就是反馈给神经和细胞的信息。智能大数据集成意味着该组织的“神经系统”,为整个企业快速传达信息,为现代商业生态系统起着至关重要的作用。但这也意味着数据中心的管理人员将获得他们寻求的准确和高效的数据处理的安全性,质量,控制和管理。
整合大数据价值最大化的三个关键因素
从哪里开始
任何大数据项目的目的是为了获得更好的结果,其中包括直接进行实时洞察和基于循环模式的长期观点,但首先你必须克服早期的集成挑战。所以要问你自己:
· 你所有的关键数据来自哪里?
· 你的组织如何聚合并快速移动所有的数据?
· 如何分析可用的数据是否有价值?
· 通过在技术和基础设施方面的投资,你的企业如何才能最大限度地发挥价值?
最终,大数据整合摄入,准备和提供的数据,不管是什么来源。这包括利用在企业每一类型的数据,包括复杂的,往往是非结构化的机器产生的数据,这通常需要一个更加融合的数据中心的基础设施。
因此,第一步骤,可以说是最重要的一步,是整合所有可用的数据。以下是确定你的大数据集成项目有效实施的三个关键领域。
(1)可靠的数据流
摄入大数据到一个平台,像ApacheHadoop这样的平台是不够智能的,不足以启动一个Hadoop集群,输入所有类型的数据,并得出具有突破性的新见解,展现自己。大数据行业厂商似乎每一个星期都在发布新的工具和升级版本,甚至将某一技术引入到你的堆栈,虽然功能并不强大,但却可以使你的整个平台过时。
这是常见的企业应用程序和Hadoop集群之间的经验数据流和数据退化问题。因此,大多数反应涉及手工编码正在尝试努力工作,并抛弃一些其他类型的技术。通常情况下,这是一个解决方案。但这不是最终的解决办法。
采用一个安全的,敏捷的集成平台,专注于调动实际的数据流进出数据中心的管道,确保在越来越复杂的工作场所的生态系统进行可靠的信息交换。
(2)可扩展性
目前存在一些主要的整合,治理和安全问题,需要针对不同层次的大数据采取不同的举措,特别是在数据中心。我们今天正在经营业务在其规模和信息方面日益庞大,这使得数据成为“大数据”。而人们需要跨越地域和传统的数据中心来管理大数据,那些过时陈旧的工具已经严重低估了现代需求。
随着企业的发展和新的数据源开始发挥作用,需要增加不同的技术,你的系统将无一例外地必须适应。如果你将现在的问题通过手工编码解决,当你试图扩展之后,会不会在拥有它以后抛弃它?
简单地增加更多的工作人员或代码的问题并不是一个可扩展的策略,也不会解决复杂的大数据传输问题。需要有一个坚实的数据集成和管理平台下的商业智能工具,可以轻松地扩展,采用众多的大数据工具,并且其来源而不中断。
(3)数据质量,分类,治理
而从结构化数据出来的CRM和ERP应用程序通常很好地进行企业的分析,但它是非结构化的数据,更加难以管理。企业必须以某种方式治理信息混乱,因为即使是最小的数据质量的问题也会产生巨大的错误。成功的公司在元数据级别上做到这一点。
通过元数据定义信息是至关重要的,因为它提供了来自大数据的结构,帮助进行分类和整理这些信息以后可以轻松找到。当信息流动到你的数据湖,必须进行某种分类,因此你正在做分析的数据实际上是准确的。
企业在错误的数据方面浪费了一些技术周期,特别是昂贵的今天。所有这些质量和分类必须在某一点上进行,但它应该在早期的水平,即使在集成周期。企业认为在数据质量的早期可以得到更好的,更有价值的分析。
总结:
每一个组织都会成为一个数据组织,或是被甩在后面。是什么使一个公司可以独有他们的数据,并更好地使用数据。因此,一个成功的大数据项目最终取决于一个组织的捉捕其数据的能力。
快速摄入和处理的大数据,需要一个可靠的集成基础设施,可以很容易地扩展以容纳大量的数据量,驱动实时访问,并支持每一个请求分析。利用信息,以获得竞争优势,这听起来很伟大,但只有可靠准确地集成了所有的数据源之后,才能建立一个可用的数据湖,。
当正确的信息传递给正确的人,所以可以理解并采取行动最大限度地提高你的大数据整合的价值。但是,只有当企业支持提供了大数据下的投资和可靠的集成平台,他们将获得每个企业都在寻求大数据的最佳回报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11