
互联网下的农业大数据模式思考
最近一直有种很强烈的感觉,互联网信息技术的革新可以用一天一个样来形容,生怕自己某天一睁眼已落后很多!这不是在做梦,而是正在追赶二十年前的日本,记得在2010年与日本宇航人株式会社交流日本消费市场时,就知道二维码交易其实在日本早已普及,难怪之前看日本的包装设计上都有一个看不明白的码,其实就是我们今天才盛谈的二维码!
关于二维码在现代农业上的应用,我也考察了全国各大城市,但发现在北京上海超市出售的蔬菜上标有的所谓“质量追溯码”其实是摆摆样子,明眼的人一看就漏洞百出。
田野餐桌2013年启动质量追溯系统,每批次每品类都是不同的码,也是我至今看到唯一能实现蔬菜质量可追溯的企业。并在此基础上,田野餐桌开始了对农业物联网的研究与实践。
安全食材也好,名优土特产也罢,都属于餐桌文化的一部分,是相当丰富的产业体概念,人类无穷尽对"食欲"的追寻致使
这是一个空间极其庞大、需求极其个性、选择极其丰富的全产业体,所以任何一个从产品出发的企业或产品都无法真正满足“餐桌文化”,单枪匹马的时代要过去了。
我国农业大部分企业仍然保持个体户、小规模经营的模式,这种传统落后的经营模式不仅不利于行业规模的扩大,而且限制了行业发展,在很大程度上降低了农业产业的整体经济效益。出自行业自身发展的需要和行业未来发展趋势,农业在移动互联网思维下的大数据时代已经成为必然趋势。这是由三方面原因造成的:
其一:大家都知道城市人的购物行为和习惯已经被各类超市或市场垄断,那么我们就需要重新打通一条通往消费者餐桌的道路,那就得让消费者购物更方便,更放心,更有趣味性,这便是农业O2O模式,但绝对不是简单的电子商务或者微信营销。如果谁视微信营销为神,迷信微信能搞定一切问题,那就真的要出问题了。
其二:农民或者传统农企的商业意识薄弱,没有市场的概念,更无品牌的意识,无法有针对性与持续性的包装与宣传,更无法接触到稳定的销售模式与渠道,导致农产品供应信息的贫乏;在我看来,我国搞的家庭农场纯属扯淡,纯属浪费土地资源,家庭农场只能在市场面前忍气吞声,挣着辛苦与收入不对等的血汗钱,靠政府扶持勉强度日,弄不好就成了中国农业改革的试验品,成了垫脚石!
其三:我们都知道一件商品的流通靠的是三方的行为,购买者、供应者和销售者,而其中的销售者是最重要的一环,或者此时此刻我们要将销售者的概念再次革新。从阴阳虚实角度讲,购买者与供应者为实,那么销售者完全可以用虚拟服务平台代替,不再是传统意义上的“买卖人”“二道贩”的实。大数据平台便是一个提供供求信息的服务者,通过平台的带动,整个市场才逐渐形成并运作起来,数据已成为一种新的经济资产类别,就像货币或黄金一样。对数据处理、加工,预测未来趋势,指导决策的服务,跨行业的业态对接更是价值连城,未来通过“大数据驱动的营销决策”方能引爆市场。
因此,我们看到了目前农村农产品的尴尬境遇,一方面的需求旺盛,寻找不到货源,一方面的市场意识薄弱,未能将之放入市场流通。那么谁来做中间者呢?谁来制造这样的市场并使之活跃起来?相比大家比我更清楚。
所以大数据的应用与管理是农产品未来竞争的主战场。应当加快无线领域市场营销提供构建,抢先实现与移动互联网新市场潜在客户的无缝对接。以手机APP客户端作为进入移动互联网新市场的突破口,构建无线领域市场营销体系,以个性化的营销服务提高消费群体的忠实度和满意度,是传统农企制胜未来移动互联网市场竞争的关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13