
电视衰落了吗?大数据告诉你_数据分析师
不久前,有媒体报道,受个人电脑、平板电脑、智能手机的冲击,北京地区电视机开机率从3年前的70%下降至30%。“互联网取代电视”,唱衰电视的言论让人们疑惑,电视是否正在失去主流媒体的影响力?
11月27日,北京大样本收视数据研究中心发布的最新数据表明:电视仍是强势主流媒体,其内容的时效性、精致性等特性让网络媒体仍然无法取代。
北京地区开机率65.6%
数据显示:11月26日的北京地区有线电视收视用户不重复开机率为65.6%,有线电视收视用户每日每户平均收视时长为208分钟。
随着高清交互节目内容的不断丰富,北京地区有线电视用户每日每户平均收视时长几年来持续增长,从2012年的192分钟已经上升到2014年的206分钟。北京地区高清交互用户近两年平均每日开机率稳定,保持在60%以上,说明了“北京地区电视机开机率从三年前的70%下降至30%”的消息是没有依据的。
开机率65.6%的数据是如何得到的?准确性如何?
歌华有线公司副总经理罗小布在接受记者采访时说:“歌华有线建成的大样本收视数据实时采集分析系统,是基于超过400万户高清交互数字电视机顶盒终端回传数据进行的大数据分析,这个数据绝对可靠。”
据介绍,2012年11月,歌华有线公司成立大样本收视数据研究中心,这是全国广电第一个集科学的数据采集和自主的分析技术为一体的收视数据生产分析工作中心。2014年,中心建成全国首个大样本收视数据实时回传、采集、分析系统,让收视率调查迈入“大数据时代”。
两年来,该中心依托海量高清交互数据生产的北京地区收视率数据产品,成为政府的舆情参考和媒体机构的数据智囊,是电视节目制作的引导参考。“下一步还将为用户提供个性化的智能电视收视服务。”罗小布说。
收视率调查的一场革命
近年来,收视率造假的新闻层出不穷。操作样本户、窃听和截流数据、直接篡改等人为方式干预,造成了“收视率乱象”。
据介绍,不同于传统收视率调查,歌华收视数据研究中心可记录每一用户每一步的操作行为,具有客观、公正、权威的特点;数据自动回传和采集,全程由计算机自动完成,客观反映用户真实行为,没有人为干预,保证数据真实、可信。“这个系统具有夜间自动关机功能,如果夜间4点电视仍没有关,就会询问用户是否继续收看,如果无人回应,就会自动关机。这样使得收视率更加准确。”罗小布介绍道。
数据的实时回传、实时分析、实时发布,满足了大数据时代用户对收视数据越来越快速、高效的要求,具有时效性的特点。同时,中心与中国传媒大学、央视索福瑞、尼尔森、秒针系统、新生代全景、中传瑞智等单位均开展了深度技术合作。
尼尔森大中华区副总裁李昕说,歌华有线双向平台能够实时采集超过400万终端的收视行为、页面访问、业务使用、广告曝光等数据,相对于传统的基于测量仪的小样本来说,无异于一场革命。
“大数据”收视调查将覆盖全国
北京市新闻出版广电局局长李春良告诉记者,国家新闻出版广电总局日前正式批复同意歌华有线发布和提供广播电视收视数据,具体包括两种方式:一是向业内播出机构、广告公司等提供直播节目收视数据情况,包括北京地区所有频道、所有节目一周收视情况,北京地区新闻节目、电视剧节目、综艺节目、体育节目等一周收视情况。二是通过北京地区高清交互平台、报纸、网站,公开发布“北京地区有线电视用户每日不重复开机率”“北京地区有线电视用户每日每户平均收视时长”“北京地区最受观众喜爱的回看节目一周点播情况”“北京地区最受观众喜爱的回看频道一周点播情况”四项收视数据情况。
据透露,2015年,歌华有线大样本收视数据研究中心将逐步实现宽带用户数据、互联网电视数据、手机电视数据的采集,可提供占有率、忠诚度、用户黏性等多维度的收视数据指标。同时,歌华有线将联合全国有线电视网络公司,共同搭建全国收视数据调查研究中心,建设全国收视行为数据库和权威数据采集、分析、发布平台,树立大数据时代行业标准,打造全国收视数据权威发布品牌。
大数据的内核,是对用户需求的精准把握与分析。在大数据时代,传统媒体面临改革的形势下,理念和技术上的革新将为电视行业带来新的发展机遇。本文来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10