京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电视衰落了吗?大数据告诉你_数据分析师
不久前,有媒体报道,受个人电脑、平板电脑、智能手机的冲击,北京地区电视机开机率从3年前的70%下降至30%。“互联网取代电视”,唱衰电视的言论让人们疑惑,电视是否正在失去主流媒体的影响力?
11月27日,北京大样本收视数据研究中心发布的最新数据表明:电视仍是强势主流媒体,其内容的时效性、精致性等特性让网络媒体仍然无法取代。
北京地区开机率65.6%
数据显示:11月26日的北京地区有线电视收视用户不重复开机率为65.6%,有线电视收视用户每日每户平均收视时长为208分钟。
随着高清交互节目内容的不断丰富,北京地区有线电视用户每日每户平均收视时长几年来持续增长,从2012年的192分钟已经上升到2014年的206分钟。北京地区高清交互用户近两年平均每日开机率稳定,保持在60%以上,说明了“北京地区电视机开机率从三年前的70%下降至30%”的消息是没有依据的。
开机率65.6%的数据是如何得到的?准确性如何?
歌华有线公司副总经理罗小布在接受记者采访时说:“歌华有线建成的大样本收视数据实时采集分析系统,是基于超过400万户高清交互数字电视机顶盒终端回传数据进行的大数据分析,这个数据绝对可靠。”
据介绍,2012年11月,歌华有线公司成立大样本收视数据研究中心,这是全国广电第一个集科学的数据采集和自主的分析技术为一体的收视数据生产分析工作中心。2014年,中心建成全国首个大样本收视数据实时回传、采集、分析系统,让收视率调查迈入“大数据时代”。
两年来,该中心依托海量高清交互数据生产的北京地区收视率数据产品,成为政府的舆情参考和媒体机构的数据智囊,是电视节目制作的引导参考。“下一步还将为用户提供个性化的智能电视收视服务。”罗小布说。
收视率调查的一场革命
近年来,收视率造假的新闻层出不穷。操作样本户、窃听和截流数据、直接篡改等人为方式干预,造成了“收视率乱象”。
据介绍,不同于传统收视率调查,歌华收视数据研究中心可记录每一用户每一步的操作行为,具有客观、公正、权威的特点;数据自动回传和采集,全程由计算机自动完成,客观反映用户真实行为,没有人为干预,保证数据真实、可信。“这个系统具有夜间自动关机功能,如果夜间4点电视仍没有关,就会询问用户是否继续收看,如果无人回应,就会自动关机。这样使得收视率更加准确。”罗小布介绍道。
数据的实时回传、实时分析、实时发布,满足了大数据时代用户对收视数据越来越快速、高效的要求,具有时效性的特点。同时,中心与中国传媒大学、央视索福瑞、尼尔森、秒针系统、新生代全景、中传瑞智等单位均开展了深度技术合作。
尼尔森大中华区副总裁李昕说,歌华有线双向平台能够实时采集超过400万终端的收视行为、页面访问、业务使用、广告曝光等数据,相对于传统的基于测量仪的小样本来说,无异于一场革命。
“大数据”收视调查将覆盖全国
北京市新闻出版广电局局长李春良告诉记者,国家新闻出版广电总局日前正式批复同意歌华有线发布和提供广播电视收视数据,具体包括两种方式:一是向业内播出机构、广告公司等提供直播节目收视数据情况,包括北京地区所有频道、所有节目一周收视情况,北京地区新闻节目、电视剧节目、综艺节目、体育节目等一周收视情况。二是通过北京地区高清交互平台、报纸、网站,公开发布“北京地区有线电视用户每日不重复开机率”“北京地区有线电视用户每日每户平均收视时长”“北京地区最受观众喜爱的回看节目一周点播情况”“北京地区最受观众喜爱的回看频道一周点播情况”四项收视数据情况。
据透露,2015年,歌华有线大样本收视数据研究中心将逐步实现宽带用户数据、互联网电视数据、手机电视数据的采集,可提供占有率、忠诚度、用户黏性等多维度的收视数据指标。同时,歌华有线将联合全国有线电视网络公司,共同搭建全国收视数据调查研究中心,建设全国收视行为数据库和权威数据采集、分析、发布平台,树立大数据时代行业标准,打造全国收视数据权威发布品牌。
大数据的内核,是对用户需求的精准把握与分析。在大数据时代,传统媒体面临改革的形势下,理念和技术上的革新将为电视行业带来新的发展机遇。本文来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27