京公网安备 11010802034615号
经营许可证编号:京B2-20210330
五大技术利用教育大数据_数据分析师
需要特别注意的是,如何收集数据对于它们未来的使用性非常重要。接收数据汇入背后的挑战是从一开始就要标准化,以便今后对数据进行仔细分析。这样做并不是意味着将未结构化的数据转化为结构化的数据,而是要用直观的方法对接收的数据进行分类。
应该说,获得相关数据并不是一件容易的事。对于大学阶段的学生而言,数据的收集并不是主要问题。然而,对于中小学阶段的学生而言,挑战却很大,因为有些数据的收集存在法律问题,有的则存在伦理道德的问题。
数据收集者的人数和技能也是一个问题。对于公司而言,通常通过网络上的小型文本文件(cookies)来收集用户的相关信息。但是对于美国联邦政府教育部而言,则需要依赖于全国众多学区和研究者的网络来提炼和确认数据。
教育工作者和研究者已经开发出从大数据中提取价值的5种主要的技术。
1.预测(Prediction)——觉知预料中的事实的可能性。例如,要具备知道一个学生在什么情况下尽管事实上有能力但却有意回答错误的能力。
2.聚类(Clustering)——发现自然集中起来的数据点。这对于把有相同学习兴趣的学生分在一组很有用。
3.相关性挖掘(Relationship Mining)——发现各种变量之间的关系,并对其进行解码以便今后使用它们。这对探知学生在寻求帮助后是否能够正确回答问题的可靠性很有帮助。
4.升华人的判断(Distillation for human judgment)——建立可视的机器学习的模式。
5.用模式进行发现(Discovery with models)——使用通过大数据分析开发出的模式进行“元学习”(meta-study)。
实施这些技术就能够通过大数据来创建为提高学生成绩提供支持的学习分析系统。研究者们相信这些技术将帮助教育工作者更加有效地指导学生朝着更加个性化的学习进程迈进。
总而言之,通过大数据进行学习分析能够为每一位学生都创设一个量身定做的学习环境和个性化的课程,还能创建一个早期预警系统以便发现开除和辍学等潜在的风险,为学生的多年学习提供一个富有挑战性而非逐渐厌倦的学习计划。因此,有识之士经预言未来的学习将是大数据驱动的新时代。我们应该积极迎接这个新时代,通过大数据来分析学习,进一步改善教学的方式与方法,进一步促进学生学习成绩的提高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27