
破解大数据走向战场的难题
随着大数据在军事领域的逐步开发和应用,越来越多的人认为在未来战场上,只有具备大数据优势的一方,才能立于不败之地。但依靠大数据打仗,并没有看起来那么美,也并非一蹴而就,而需要破解相应的难题。
需 要破解数据搜集难题。从数据分析角度来看,海量数据对于得出正确的分析结论有着积极意义。因为只有当数据达到一定量且足够大,才能提供可信的规律分析。但 海量数据可能并非你希望的数据,并非有用数据。收集数据是为了发现其背后隐藏的信息、规律,然而现实中,有时所谓的海量数据对分析某一特定问题,恰好是没 有价值、毫无意义的冗杂信息。在军事领域,尤其容易产生这种现象。军事领域历来有“战争迷雾”之说,根本的原因在于敌对双方或多方拼命隐真示假,甚至有意 制造伪信息实施干扰。诸如此类的现象,决定了有价值情报搜集之难。而要成功运用大数据技术,最重要的前提是必须有可分析的材料,破解数据搜集难题,真正回 答谁来收集数据,怎样收集数据? 在平时训练中,如果采集到的数据不准、质量不高,就难以确保评估结果的真实性和有效性;在战时,如果不能及时获取敌方数据信息,准确辨别敌方的干扰、迷惑 或欺骗数据信息,都可能造成误判。
需要有让数据说话的程序模式。很多推崇大数据的人 认为,“有了足够的数据,数据就可以自己说话”。但数据怎样才能“说话”?从理论上讲,数据根本无法自己说话。要让庞大的数据“表达观点”,必须有过硬的 软件设计、分析程序,以助于以技术分析手段得出数据内隐含的结论。没有符合实际善于淘尽黄沙见真金的分析程序,空有大数据也不能得出正确结论。而且即使有 大数据分析程序也要对其分析结果保持一定的谨慎,因为只要是人为设计的东西,都难免有缺陷,并不能使人们摆脱曲解、隔阂和错误的成见。有专家指出,偏见和 盲区同样存在于大数据技术中,就像它们存在于个人的感觉和经验中一样。大数据重混杂性轻精确性、重相关性轻因果性,能够发现“是什么”而不探究“为什 么”。大数据验证人们对社会和战争的分析结论,有时比提供分析结论更为适合。
需要有 与数据分析配套的决策机制。信息化战争已经进入“秒杀”时代,而大数据技术能在很短时间内进行问题分析,应该说有其适应快速反应的优势。但如果没有与之相 对应的指挥决策机制,大数据的这一优势也可能遭到削弱。如果军兵种间的壁垒仍然很高,各作战系统都在生产自己的数据且不与体系共享,那么大数据就难以发挥 相应的作用。与之类似的是,如果指挥体制不能融合各种作战力量,各军兵种自行其是,那么大数据即使分析出正确的结论,也会因为要经过冗长的周转期而导致错 过最佳作战时机。因此要想真正利用大数据打仗,必须突出“网链聚能”,强化信息系统综合集成,充分利用高度融合、互联互通、资源共享的指挥信息系统,有效 发挥信息流对物质流和能量流的支配作用,实现作战力量的高度聚合、作战资源的合理分配和作战效能的精确释放;着力实现数据资源的统一化、规范化、交互化、 标准化,为信息系统综合集成提供稳定规范的数据环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13