
Graveyard模型的spss操作
昨天一位朋友问我Graveyard模型如何操作,我在几年前曾做过这个模型,现在有些遗忘了,先说说Graveyard模型是做什么的?为什么要用Graveyard模型 ?
1、 二维分析方法
先说说一个很好的市场研究方法,那就是二维分析方法,简单的讲就是X和Y的散点图,在市场分析和数据挖掘的过程中大多是有这种方法进入主题进行深度分析的,当然分析或者挖掘的入口大多数是数据的分布;
二维分析方法的难点就在于如何设定X,Y,,也就是X代表什么意思,Y代表什么意思;如何划分区域(一般是mean,但一定要考虑数据的分布,以防木桶原理影响决策)
2、Graveyard模型
对于提示前品牌知名度和提示后品牌知名度之间的内在关系,可以用Graveyard模型描述。它是个两维图,以提示后知名度为 X 轴,提示前知名度为 Y 轴。根据每一品牌的提示前后知名度在这个两维图上描点,每点代表一个品牌。对所有品牌的提示前后知名度进行回归分析,作出回归直线(或曲线)。这条回归直线(或曲线)将品牌分为四种类型:
(1)正常(Normal)品牌,位于回归线周围,提示前后知名度的关系与市场上的平均水平比较一致。
(2)衰退(Graveyard)品牌,位于回归线右下方的品牌,其提示前知名度相对于提示后知名度太低,显现出该品牌被消费者淡忘的趋势。
(3)利基(Niche)品牌,位于回归线左上方的品牌,其提示前知名度相对于提示后知名度较高,这类品牌其品牌认知率虽然相对不高,但其品牌回忆率较高,消费者对其忠诚度较高。
(4)强势品牌,位于回归线右上方的品牌,其提示前后知名度均很高,消费者对其忠诚度甚高,这些品牌大多是市场上的强势品牌。
3、回归线是那条
大多数的描述都是围绕回归线进行的,那么如何才能更好的模拟这条回归线呢?
统计角度:R、F检验值和T检验值
R越接近1,表明方程中X对Y的解释能力越强
F检验是通过方差分析表输出的,通过显著性水平(significant level)检验回归方程的线性关系是否显著,spss默认的是0.05,也就是小于0.05均有意义;
实际角度:可以根据自己收集数据的角度和分析的侧重点进行调整拟合曲线;
4、spss如何实现以上的过程?
step1:在回归分析中找曲线估计,如下图;
step2:选择提示前和提示后的数据分别做X和Y,选择拟合所有的曲线
接下来就是OK,之后大家根据自己的实际问题,拟合出更贴近真实的回归线吧
spss跑出来的图,大家可以复制到PPT中选择图点右键取消组合,再美化一下就OK!
5、模型展示:
6、此图解读,此图来自@Celia聪利(新浪微博)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12