
打破数据挖掘5神话
数据挖掘是一种强大的分析工具,可以使企业管理人员从描述顾客历史行为开始进一步达到预测顾客未来行为。它可以找出能解释顾客行为的规律。这些数据可以用来增加收入、降低费用、找出商业机会,以增加新的竞争优势。
会有关于数据挖掘的神话产生的部分原因是人们对它没有一个清晰的概念。数据挖掘的本质是一套复杂的数学方法,用来在详细的数据中找出并解释以前未知的规律。数据挖掘解决的是不同类型的问题。它可以用来预测未来的事件,例如在进行市场推广后的下一个月份的销售额。
许多成功的公司已经意识到,围绕着数据挖掘而衍生的神话并非事实。有远见的企业不仅不会成为这些神话的受害者,而且他们会通过使用数据挖掘来解决复杂的企业问题并达到赢利,因此获取了巨大的竞争优势。由此打破了有关数据挖掘的5个神话。
神话一:数据挖掘提供立时可见的预测
数据挖掘既不是占卜用的水晶球,也不是一按按钮答案就会魔术般跑出来的技术。它是一个多步骤过程,包括明确企业问题、研究并整理数据、开发模型、应用获取的知识。一般情况下,各企业都用大部分时间来对数据进行预处理和整理,以保证数据无冗余、无瑕疵、连贯一致及合理组合,以提供可靠的商业情报。数据挖掘的一切都是围绕数据来进行的,成功的数据挖掘需要准确反映企业运营的数据。
各企业必须了解数据挖掘的优势所在,即处理本质上可预测或可描述的具体企业问题。这些问题包括:客户细分、预测顾客购买倾向、查找欺诈、渠道最优化。
神话二:数据挖掘还不适用于商业应用
数据挖掘是一个可行的技术,其商业效果得到了高度评价。关于不适用于商业应用神话的产生归因于那些需要解释他们为什么还没有使用数据挖掘的人,且围绕着两个相关的陈述。第一个是“超大型数据库不能被有效地进行挖掘”。第二个是“数据挖掘在数据仓库引擎中不能进行。”
让我们同时解决这两个陈述的问题。因为现在的数据库非常大,所以许多企业均担心数据挖掘项目所需的额外IT基础设备会增加巨大的成本,而且针对某一项目的数据处理要花过分长的时间。但是目前有些数据库使用平行技术,它可以在数据库内进行挖掘。通过在数据库内进行挖掘,各企业可以不移动数据,利用平行处理,将数据冗余降为最低,避免因建立及维护一套全新的、数据挖掘专用的冗余数据库所带来的成本费用。通过平行处理进行的数据库内挖掘即是可行的数据挖掘技术。
神话三:数据挖掘需要单独的、专用的数据库
数据挖掘供应商一般会宣称,你需要一个昂贵的、专用的数据库、数据集市或分析服务器用于挖掘数据,因为需要将数据拉入一个专属格式以进行高效数据处理。这些数据集市不仅购买及维护的费用昂贵,它们还要求每一个单独的数据挖掘项目都进行数据抽取,这是一个昂贵并费时的过程。
数据库技术的发展使得数据挖掘可以不在单独的数据集市中进行。实际上,有效的数据挖掘需要建立一个企业级数据仓库,其全部成本比采用单独的数据集市的成本要低得多
现在我们来分析一下其中的原因。当在整个企业范围内采用数据挖掘项目时,使用数据挖掘模型的用户持续增加,同时使用大型数据基础设备的需求也在增加。一个尖端的企业级数据仓库不仅高效地储存了所有企业数据,省去了大部分其他数据集市或数据库,它还为数据挖掘项目建立了一个理想的基础。此基础是一个单一的企业范围内的数据存储库,它提供了前后一致的最新的顾客情况。通过将数据挖掘延伸整合到数据仓库,企业还可以在另外两个方面降低成本。首先,无须为数据挖掘购买并进行维护额外的专用硬件设备;其次,因采用数据挖掘技术,企业可将把数据从数据仓库中导出和导入的需求降为最低,而这一过程,像我们介绍的那样,是需要花费大量的人力和资源的。
神话四:只有博士们才会做数据挖掘
一些人认为数据挖掘是非常复杂的,至少需要三个博士才能实施它:一位来自于统计或量化领域;一位在商业领域,他了解顾客;另一位来自于计算机科学。
而实际上,成功的项目里从没有见过一个博士的身影。
数据挖掘是在以下三个领域中通过所有专业员工的合作所达成:商业运营人员提出一套明确的企业问题来引导此项目,然后他们必须解释出现的规律;分析建模人员了解数据挖掘技术、统计学和工具,他必须建立一个可靠的模型;IT人员提供了对处理及对数据理解的洞察力,也提供了关键的技术支持。
神话五:数据挖掘仅为大型公司所用
一个公司,不论大小,只要它能准确地反映其业务或客户的数据,它就可以建立运用这些数据的模型,以提供洞察重要的商业挑战的能力。企业具有的顾客数据量从来不是一个问题。
例如,Midwest Card Services公司(MCS)为20万位顾客提供电话市场推广服务、ATM管理服务、签账卡和专门的金融服务。此公司使用了一个集中式数据库以更加了解其客户群,进行有效的客户细分,并了解他们的规律及偏好。这使得MCS可以改进它自己的保险机制,并为客户提供全面的业务报告。
我们的结论是:数据挖掘不再是运行缓慢、价格昂贵或过于复杂而无法有效运行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10