京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘过程体会
Step1.
就是商业问题的理解了,那么如何更好的理解“老大”提出的商业问题困惑呢?我觉得思维导图倒是个不错的选择,当然自己要想更好的理解“老大”的意思还需要进一步的沟通,商业问题的理解关系到这个挖掘项目的价值,甚至成败,所以在这块大家要显得“外向”一些,多交流、多沟通、多了解这个商业问题背后的东东;

step2.
接下来就是需要提取的字段,也就是数据挖掘的宽表,这点就要和企业的DBA人员多多交流,看数据库中各个维度的表格都有什么字段,主要关联的主键有那些,那么如何选取字段呢?这就需要自己把自己与“老大”共同讨论的思维导图拿出来看看,这样就有提取那些字段的感觉了,这部分大多数的提取是自己对商业问题的感觉或者一些前辈的经验;
Step3
数据的ETL,这部分一般的时间占数据挖掘项目的70%左右,为什么数据的ETL如此重要呢?万丈高楼平地起,如果连地基都是“豆腐渣工程”的话,那么再华丽的楼房也没人愿意掏腰包;嘿嘿,开个玩笑;数据的ETL主要是一些异常值、空值(miss值)、错误数值的处理,这部分一般需要根据数据自身的分布、简单的统计知识、该字段体现的业务特点、自己的经验进行的,也就是这一部分的处理主要是统计知识+项目经验+业务特点;

Step4
建立模型所需要的变量如何选?当然目标变量(Y)一般都是事前设定好的,那么X如何找呢?大多数都是应用相关分析、特征选择、描述性的统计图表(分箱图、散点图等),这里我只想说一句算法是死的,有时候我们根据算法得出来的X对Y没有影响,但在实际的业务中影响却很大,所以大家不要过于依赖算法、工具,我曾经因为这点,被人批了,555~~~~~

建立数据挖掘模型,这块是许多同行相当痴迷的地方,我也不例外,记得大学毕业去北京的时候,就在咨询公司研究算法什么的,后来经过leader的几次谈话,自己才慢慢走出了误区;一句话,我们追求的是模型带来的效益,所以没那么多时间去玩模型、搞算法;但是作为数据挖掘从业者,最基本的应该是了解各种算法的原理,还有一些数据挖掘模型参数的意义,比如在spss clementine中就有自定义和专家两个供大家选择,所以掌握一些参数的意义也是有必要的,大家可以上网下一些人大数据挖掘的视频教程,里面讲的比较详细;

Step6
模型评估,大部分都是借助数据挖掘自带的评估模型来做,什么准确度、收益率等,理论上很完美,实际中就一定有疗效吗?非也!有时候模型跑出来的信息很诡异的,建模人员都无法知道这个结果如何去解读,这时我倒是觉得可以从模型中选取一部分人群来做一下简单的调研,或许能获得更多数据背后的东西,也能为自己的片子多几分数据解读的色彩,何乐而不为呢?

Step7
模型可视化展示,可视化一直是一些数据服务公司所追求的东东,也是我们从业人员一种传达信息的方式,对于一个专题的数据挖掘模型,我相信大家都能通过一些图表、表格或者更炫的PPT搞定,打个岔,我常常遇到这样的问题,在对多维度做交叉分析时,因为涉及许多数据维度的钻取而很难展现给决策者,这时可以用水晶易表来做动态的展示,但是遇到更复杂的逻辑呢?大家不难发现现在大部分的数据分析系统或者叫运营体系的分析维度都是作为一个content展现给使用者,从数据从业者的角度来看,这只是从不同维度对数据进行了切割而已,谈不上真正的数据可视化,路漫漫兮修远兮!业务、维度、用户交互三者融合才是王道;

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10