
大数据时代,实现精准营销并非无规律可循,关键三部曲,其中用户画像是核心:
第一步:知己,意味着知道自己产品的定位是什么,产品卖点是什么等等。
构建产品标签+内容标签。
第二步:知彼,简单的说就是清楚竞争对手的情况、清楚目标用户的情况。
构建用户标签,识别自身竞争力,选取切入点。
第三步:作战,对不同的对象采取不同的策略,直击痛点,实现转化。
大数据时代下,企业如何驾驭数据,利用数据驱动、支持决策,是形成差异化竞争优势的关键所在。这听起来不错,但如何真正落地,是非常不容易的事,尤其是传统企业。
对于企业来说,营销是关键的一步,也是数据驱动作用比较显性的一步,如何通过对数据的采集、处理、分析,洞察用户需求,精准找到目标用户群并提供相应的方案,从而实现企业盈利、用户体验双赢,是顺应时代大势。
精准营销的概念是科特勒在05年的时候提出来的,科特勒是现代营销学之父,他写的《营销管理》非常经典。 这个精准营销的概念是这么定义的:在精准定位的基础上,依托现代信息技术手段建立个性化的顾客沟通服务体系,实现企业可度量的低成本扩张之路。
简单来说就是:5个合适,在合适的时间、合适的地点、将合适的产品以合适的方式提供给合适的人。这就跟我们人际交往中的男女恋爱是比较相似的。必须是对的时间遇到对的人。
营销三部曲:知己、知彼、作战
1、知己
意味着知道自己产品的定位是什么,产品卖点是什么等等。构建产品标签+内容标签。
2、知彼
简单的说就是清楚竞争对手的情况、清楚目标用户的情况。构建用户标签,识别自身竞争力,选取切入点。
3、作战
在这个基础上,对不同的对象采取不同的策略,直击痛点,实现转化。
在对企业自身情况和产品情况分析这个环节,重点就是,可以根据产品特征,定位出我们的目标用户。接下来,我们就要对目标用户进行分析。怎么分析?这就需要对用户进行画像。
1. 什么是用画像?
用户画像,简单来说就是通过一系列简短、精炼、易识别的语言来描述一个人/物。
比如说,范冰冰,性别:女;职业:演员;年龄:30多岁;婚姻状态:已婚/未婚;收入情况:高;大家可以从自己关注的角度去了解,这里就不多说了。
但是要强调一下:用户画像不是一个数学问题,也不是技术问题,实际上是一个业务问题。关键在于我们希望从哪些角度去了解我们的用户,这个是跟我们的目的相关的。
比如,我们想追求范冰冰,那关注点应该是婚姻情况/恋爱情况,喜欢吃什么,有什么爱好;那如果我们是希望给她推荐化妆品,那关注点可能就是,皮肤是不是敏感、油性还是干性这些了。关键还是业务问题,但是用户画像的实现更多是技术问题,主要是给用户打标签。
2. 用户画像怎么做?
这里的标签,就是刚才我们提到的观察的一个角度,比如,性别、年龄、爱好、家庭情况、购买能力等。
具体来讲,当为用户画像时,需要以下三个步骤:
第一步:数据采集,因为我们用户画像是为了了解用户,因此需要收集用户所有的数据,主要包括静态信息数据、动态信息数据两大类,静态数据就是用户相对稳定的信息,如性别、地域、职业、消费等级等,动态数据就是用户不停变化的行为信息,如网页浏览行为、购买行为等;
第二步:分析这些数据,给用户打上标签和指数,标签代表用户对该内容有兴趣、偏好、需求等,指数代表用户的兴趣程度、需求程度、购买概率等;
最后将这些标签综合起来,我们对用户就有大概的了解了。
3. 用户画像怎么用?
在完成用户画像之后,我们就可以用来精准营销,当然用户画像还有其他的应用场景,比如用户洞察、个性化推荐之类的应用,或者直接进行数据变现。具体的应用场景需要根据公司、业务的具体情况进行应用场景设计。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30