
利用数据分析来提供更加个性化的客户服务
个性化的服务已然成为当今众多零售商的目标,但大数据分析的出现是否是他们目前所寻找的解决方案呢?现如今,海量的数据信息被企业的客户从各个不同的渠道产生出来,而企业则都希望能够利用这个数据信息来为其客户提供更具个性化的服务体验。
根据分析调研公司Gartner的调研报告显示,先进的分析将成为企业客户服务的关键,但该报告同时也指出,通过目前仅有不到10%的企业采用了大数据分析技术。
企业当前所面临的挑战是:他们仍然面临如何很好的处理结构化数据、如何基于他们的客户关系管理(CRM)系统来部署一个有用的分析框架,以及如何将来自企业内部和外部的不同的数据源进行有效整合。
然而,企业必须对于如何应对由客户通过数字技术所参与创造的相关波动保持高度的敏感。这样才能够做出实时的反应,让客户感觉到其自身的个体价值只可能通过高级分析得到高度重视。
大数据提供了基于客户个性特点的交互,通过了解他们的态度、并综合考虑诸如实时定位等因素,以帮助在多渠道的服务环境提供个性化的服务。
考虑客户独特的行为
分析公司Ovum的资深客户分析师Aphrodite Brinsmead表示说,个性化和分析是交织在一起的,因此,当企业在开发一个多渠道战略时,需要充分考虑其客户独特的特征和行为。
“企业应该在网络上使用不同的渠道回顾其客户现有的行为。在做出添加新的渠道或连接数据的决定之前,了解基本的趋势是至关重要的。”Brinsmead说。
“然后,企业应该专注于如何减少客户方面的麻烦程度,并努力提升首次与客户联络的问题解决率。他们应该尽量随着客户转换到不同的渠道而与客户保持流畅的沟通,利用数据分析同时为客户和代理商推送有关数据信息。”她说。
寻找客户所偏好的优惠时间和方法是提供个性化服务的关键,而数据分析则可以帮助决绝这一情报信息问题,并帮助企业省钱。Gartner表示,相关的促销信息需要从各种渠道进行推送,包括网站、手机等移动应用程序或通过客服中心与客户接触互动的过程中。
据Gartner称,及时推动全面的信息能够帮助减少供应商回答客户问题的时间,进而能够提升企业的竞争力和客户满意度。这方面也同时具有金融财政上的意义,因为通过适当到位的信息推动管理,企业可以降低25%或更多的客户支持成本。
“通过分析与客户保持联系进而为其推送信息的渠道和方式,企业能够根据客户的喜好推动个性化的信息。通过特定渠道为典型客户推动服务和支持的相关问题的信息,企业可以预知客户的信息需求。”Brinsmead说。
了解你企业的客户作为一个独特的个体,是创造积极的个性化客户服务体验的关键,地址管理公司Postcode Anywhere的首席技术官杰米·特纳表示说。他认为,个性化的客户服务是确保企业能够在数字经济中生存的关键。
“服务就像是一份保险,当你需要它的时候,你真的需要它。它不应该是复杂的,而应该是无摩擦的、无痛的。那些懂得了这一点的企业才能够在市场中长期立于不败之地。客户在网上的忠诚度其实是很小,所以企业需要尽力争取留住你的客户。特纳说,太多的企业目前仍然专注于的是获取更多的客户,而不是让他们享受到愉悦的服务体验。”特纳说。
投资分析
然而,在缺乏投资分析的前提下,想要实现有效的个性化客户服务是相当不易的。
“每家企业都想要有个性化的客户服务,但这很难做到。这是非常个人的,非常难以规模化。”特纳说。
根据特纳介绍,良好的分析可以帮助企业变得更为积极主动,而不是一味等待客户来反馈他们的期望。
“这对我们来说是非常重要的,我们已经建立了一系列的技术来帮助我们理解和预测客户的感受”。这样我们可以针对未来的客户‘先发制人’。”他说。
他认为,大数据分析在不断发展的能够清晰辨别客户个性好恶的智能化服务方面扮演了相当重要的角色。
“大数据是绝对的关键。这意味着不同的事情对于不同的人有不同的意义。在我看来,大数据更多的是一种方法。其的确是收集尽可能多的数据,然后使用类似机器学习筛选的技术从众多纷繁复杂的数据中提取出重要的价值信息。挑战之一是能够及时的做出反应,或做出实时的、理想的、有针对性的行为。”特纳说。
他说,仅仅依赖于通过在推迟数天之后大批量的数据处理来提供“有洞察价值”的数据是远远不够的。
“那些能够提供最好的服务的企业恰恰是因为他们能够及时的从客户行为分析中进行线索处理,并即时做出判断。镜像的技术将有助于提供真正自然且支持个性化的服务,这同时对客户来说也是有用的。”特纳说。
非侵入性的分析方式
然而,随着企业开始分析大数据,也为企业带来了大责任。Ovum的Brinsmead说,最好的做法是指使用非侵入性的分析方式。
她说:“要谨慎使用客户数据来进行相关的推送和促销,否则您企业将面临失去客户信任的风险。”她说。
据Brinsmead介绍,企业需要明智且创造性地使用通过网站、社交资讯、移动应用程序和自动化的聊天工具所收集和整合而来的数据。
“客户绝对不会希望离开移动应用程序,然后去到一个社区或聊天工具,以寻求获得关于移动应用程序的技术援助,”她补充说。同样重要的是要了解客户想要如何进行与其进行互动的方式的选择。
“对于那些存在个人问题、复杂或紧急要求的客户而言,在线支持将始终是需要的。企业应该意识到,当客户寻求进行在线互动时,务必要确保客户的快速连接。企业应该掌握该客户之前的问题历史记录,了解客户的网络环境,等等信息。”Brinsmead说。
Gartner公司研究总监Brian Manusama表示,那些利用大数据分析来为客户服务服务的企业将能够提高客户满意度,帮助他们提供丰富的,个性化的客户服务。这样,企业就可以通过预测分析进一步增加营收。在相关问题恶化之前就进行有效的规避是最明智的途径,进而能够帮助企业减少支持成本、留住客户。
通过分析,企业可以更好地了解客户所遇到的服务问题,并采取行动,避免问题和解决问题。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13