
大数据在营销和销售中的十大应用
本文旨在给为大数据革命性改变市场营销和销售的众多趋势做一个概述, 其中综合了十个有关报告,介绍了十个大数据在如今的市场营销和销售策略中的应用。其中增长很快的一个领域就是定价:管理价格以及通过销售网络传播和优化定价。在有大数据算法和先进的分析技术的今天,为给定的产品或服务实现价格优化越来越不在话下。就连在不是那么有弹性的大宗商品驱动行业中,简化日常定价决策也已经是非常常见的了。
◆ ◆ ◆
大数据对市场营销和销售的巨大贡献
当前大数据可以辅助销售的方面包括:提高潜在客户的质量,提高销售机会数据的质量,提高目标客户开发精确性,区域规划,赢利率等等。而在市场营销中,大数据也功不可没。除了提供提高转换率策略,销售前景预测,增长收入和客户生命周期外,还有可以帮助我们判断销售周期内各阶段哪些内容是最有效的,以及如何改进客户关系管理系统。如果公司是提供基于云计算的企业软件服务,大数据还可以提供关于何降低客户获取成本(CAC),客户终身价值(CLTV)的信息,管理许多其他客户驱动的指标,这些指标对于经营云业务至关重要。
下面就是大数据变革命市场营销和销售的十大应用:
1. 大数据使得根据每个客户和每个产品的关系进行等级差别定价策略,最大限度的优化定价变得可能。
麦肯锡的分析发现,一家典型的公司75%的收入来源于其标准产品,在每年这成百上千种定价标准产品的决策中30%的时候公司无法定出最好的价格。假定销售量没有减少,1%的价格提高却可以带来高达经营利润8.7%的增加,定价具有显著的提高盈利能力的潜力空间。
报告来源 -- 麦肯锡公司:利用大数据更好的做定价决策
2.大数据可以带来更大的顾客回应率以及更深层次的客户信息。
根据下图的调查问卷,Forrester的研究发现44%的B2C的市场营销人员正在使用大数据提高客户的的回应率,36%的营销人员运用数据分析和数据挖掘,获取更多的深层客户信息从而策划更多的关系驱动的市场策略。
报告来源- Compendium 市场营销大步向前解决增强客户体验和营销效果的难题(PDF)
3.客户分析(48%),操作分析(21%),欺诈和合规(12%),新产品与服务创新(10%)和企业数据仓库优化(10%)是当今最常见的大数据销售和营销案例。
大数据联盟(DataMeer)最近的研究发现,客户分析统领大数据在销售和市场营销部门的应用。而支持这个趋势的有下面四个关键策略:增加潜在客户、减少客户流失、增加每个客户的投入以及改进现有产品。
报告来源 – 大数据 : 企业的竞争力武器
4.用大数据将分析数据嵌入到情境营销中。
许多公司的营销平台技术正在快速完善,支持这个趋势的基础是不断变化的客户、销售、服务和与现有系统不匹配的渠道需求。这造成了许多营销部门在数据和处理上无法完全集成好。大数据分析可以创建可扩展的系统分析,可以再一定程度上缓解这个问题。下图来自Forrester的研究,在SAS网站上可以免费下载,结合直觉与参与的情境营销工具和技术:企业营销技术手册。
报告来源- SAS: 结合直觉与参与的情境营销工具和技术:企业营销技术手册
5.大数据分析可以完善客户关系使得营销方案更成功。
通过大数据分析,定义和指导客户发展,营销人员创造更大客户忠诚度。下图来自于SAS赞助Forrester的研究,分析是如何在整个客户生命周中提供价值的(图中两条线间的距离表示者数据分析带来的价值)。
报告来源- SAS: 数据分析是如何助力整个客户客户生命周期管理
6.生物医药行业已经开始利用地域分析来优化销售策略及市场投放计划。
麦肯锡发现,生物医药企业基本都要花费20%到30%的利润用于销售和行政管理。如果这些企业可以在拥有更多销售潜力的地区和范围精确地部署销售及市场策略,将能够立即降低这项成本。
报告来源 –大数据在生物制药行业的效果
7. 58%的首席营销官(CMO)表示,在搜索引擎优化及营销、邮件市场营销和手机营销方面,大数据发挥着最大的影响力。
其中54%的CMO相信大数据及分析将会长久地在他们营销策略制定过程中扮演至关重要的角色。
报告来源- 大数据和首席营销官:什么在改变着市场营销领导能力
8. 在最近的调查中,福布斯对十余个行业的市场领跑者进行了深入的追踪,发现他们通过利用先进的大数据分析获得了更高的客户参与度和客户忠诚度。
这项研究发现,在这十余个行业中,特定部门分析及大数据的专业程度是决定策略成功与否的关键。与此同时,当试点计划取得积极结果时,整个企业范围内的文化也会发生大规模深层次的转变。来源:Forbes Insights, The Rise of The New Marketing Organization.
报告来源 – 新型营销组织的崛起
9. 大数据让企业对自己的每个商业增长点都有了更准确的理解。
增加收益,减少成本和减少运营成本,如今,大数据正在这三个关键领域里发挥它的效用,转化成实际的商业价值。当有效利用先进的大数据分析时, 一个企业的价值驱动点将会被更有效的计量。下图的演示图就说明这一点。
报告来源 - Deloitte的大数据报告
10. 基于大数据的客户价值分析已经让营销者能够在各个渠道为客户提供连续稳定全方位的用户体验。
客户价值分析(CVA) 最近正在成为新兴的热门话题,因为一系列基于大数据的技术在保持和衡量客户关系的过程中加速了销售周期。现如今,CVA成为了一系列用于在销售网络中精心维护优质全面的客户体验的科技。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13