
logistic回归样本量的估算,经验之谈
样本量的估计可能是临床最头疼的一件事了,其实很多的临床研究事前是从来不考虑样本量的,至少我接触的临床研究大都如此。
他们大都是想到就开始做,但是事后他们会寻求研究中样本量的依据,尤其是在投文章被审稿人提问之后。可能很少有人想到研究之前还要考虑一下样本够不够的问题。其实这也难怪,临床有临床的特点,很多情况下是很难符合统计学要求的,尤其一些动物试验,可能真的做不了很多。这种情况下确实是很为难的。
本篇文章仅是从统计学角度说明logistic回归所需的样本量的大致估计,不涉及临床特殊问题。
其实不仅logistic回归,所有的研究一般都需要对样本量事前有一个估计,这样做的目的是为了尽可能地得出阳性结果。
比如,你事前没有估计,假设你做了20例,发现是阴性结果。如果事前估计的话,可能会提示你需要30例或25例可能会得出阳性结果,那这时候你会不会后悔没有事前估计?
当然,你可以补实验,但是不管从哪方面角度来讲,补做的实验跟一开始做得实验可能各种条件已经变化,如果你在杂志中说你的实验是补做的,那估计发表的可能性就不大了。
一般来说,简单的研究,比如组间比较,包括两组和多组比较,都有比较成熟的公式计算一下你到底需要多少例数。这些在多数的统计学教材和流行病学教材中都有提及。
而对于较为复杂的研究,比如多重线性回归、logistic回归之类的,涉及多个因素。这种方法理论上也是有计算公式的,但是目前来讲,似乎尚无大家公认有效的公式,而且这些公式大都计算繁琐,因此,现实中很少有人对logistic回归等这样的分析方法采用计算的方法来估计样本量。而更多地是采用经验法。
其实关于logistic回归的样本量在部分著作中也有提及,一般来讲,比较有把握的说法是:每个结局至少需要10例样品。
这里说得是每个结局。例如,观察胃癌的危险因素,那就是说,胃癌是结局,不是你的总的例数,而是胃癌的例数就需要这么多,那总的例数当然更多。比如我有7个研究因素,那我就至少需要70例,如果你是1:1的研究,那总共就需要140例。如果1:2甚至更高的,那就需要的更多了。
而且,样本量的大小也不能光看这一个,如果你的研究因素中出现多重共线性等问题,那可能需要更多的样本,如果你的因变量不是二分类,而是多分类,可能也需要更大的样本来保证你的结果的可靠性。
理论上来讲,logistic回归采用的是最大似然估计,这种估计方法有很多优点,然而,一个主要的缺点就是,必须有足够的样本才能保证它的优点,或者说,它的优点都是建立在大样本的基础上的。一般来讲,logistic回归需要的样本量要多于多重线性回归。
最后仍然需要说一句,目前确实没有很好的、很权威的关于logistic回归样本量的估计方法,更多的都是根据自己的经验以及分析过程中的细节发现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13