
logistic回归样本量的估算,经验之谈
样本量的估计可能是临床最头疼的一件事了,其实很多的临床研究事前是从来不考虑样本量的,至少我接触的临床研究大都如此。
他们大都是想到就开始做,但是事后他们会寻求研究中样本量的依据,尤其是在投文章被审稿人提问之后。可能很少有人想到研究之前还要考虑一下样本够不够的问题。其实这也难怪,临床有临床的特点,很多情况下是很难符合统计学要求的,尤其一些动物试验,可能真的做不了很多。这种情况下确实是很为难的。
本篇文章仅是从统计学角度说明logistic回归所需的样本量的大致估计,不涉及临床特殊问题。
其实不仅logistic回归,所有的研究一般都需要对样本量事前有一个估计,这样做的目的是为了尽可能地得出阳性结果。
比如,你事前没有估计,假设你做了20例,发现是阴性结果。如果事前估计的话,可能会提示你需要30例或25例可能会得出阳性结果,那这时候你会不会后悔没有事前估计?
当然,你可以补实验,但是不管从哪方面角度来讲,补做的实验跟一开始做得实验可能各种条件已经变化,如果你在杂志中说你的实验是补做的,那估计发表的可能性就不大了。
一般来说,简单的研究,比如组间比较,包括两组和多组比较,都有比较成熟的公式计算一下你到底需要多少例数。这些在多数的统计学教材和流行病学教材中都有提及。
而对于较为复杂的研究,比如多重线性回归、logistic回归之类的,涉及多个因素。这种方法理论上也是有计算公式的,但是目前来讲,似乎尚无大家公认有效的公式,而且这些公式大都计算繁琐,因此,现实中很少有人对logistic回归等这样的分析方法采用计算的方法来估计样本量。而更多地是采用经验法。
其实关于logistic回归的样本量在部分著作中也有提及,一般来讲,比较有把握的说法是:每个结局至少需要10例样品。
这里说得是每个结局。例如,观察胃癌的危险因素,那就是说,胃癌是结局,不是你的总的例数,而是胃癌的例数就需要这么多,那总的例数当然更多。比如我有7个研究因素,那我就至少需要70例,如果你是1:1的研究,那总共就需要140例。如果1:2甚至更高的,那就需要的更多了。
而且,样本量的大小也不能光看这一个,如果你的研究因素中出现多重共线性等问题,那可能需要更多的样本,如果你的因变量不是二分类,而是多分类,可能也需要更大的样本来保证你的结果的可靠性。
理论上来讲,logistic回归采用的是最大似然估计,这种估计方法有很多优点,然而,一个主要的缺点就是,必须有足够的样本才能保证它的优点,或者说,它的优点都是建立在大样本的基础上的。一般来讲,logistic回归需要的样本量要多于多重线性回归。
最后仍然需要说一句,目前确实没有很好的、很权威的关于logistic回归样本量的估计方法,更多的都是根据自己的经验以及分析过程中的细节发现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12