
2016年数据科学家将扮演什么角色?
数据科学家已被誉为2016年美国最好的工作,但是这一岗位的定义和所要求的技能却一直在变化。技术进步与商业需求不断驱动数据科学岗位的演化,其所处的行业也是日新月异。在本文中,我们将更加仔细地审视2016年数据科学家将扮演的角色。
Dave Holtz写道,“数据科学家”常用作“一揽子头衔”(blanket title)的统称,描述一组截然不同的工作岗位。他将这个现象的原因,归结为数据科学领域仍处在早期发展阶段,对其定义不够准确。如果接受数据科学是一个“跨学科领域”这种大而全的说法,那么数据科学家的工作就是从不同形式的大量数据中提取知识或洞察。我们已经处在大数据时代,这是无法改变的事实。随着数据量与日俱增,从这些数据中提取出价值的工作只会慢慢变得更加复杂和困难。
大数据经济背后的逻辑,正在以无法想象或预测的方式重塑我们的生活;我们做出的每一个电子操作都将产生数据,并留下与自己生活相关的蛛丝马迹。作为消费者经济的参与者,我们访问任何网站或电子服务时,所产生的数据都会被挖掘,而数据科学家就要通过计算机科学、数据分析和复杂的商业知识,来收集、清洗、分析我们提供的数据,并据此进行预测。下面的图表列出了一名数据科学家所需要的技能集。我们可以发现,与一般意义上的大数据开发者或商业分析师不同,这个岗位的职责要求掌握多种技能集。
图1:数据科学家的技能集
Rivera 和 Haverson认为,之前的数据专业人员关注的是数据的流动过程和解释,而数据科学家更注重数学视角 —— 聚焦于从历史数据和当前数据中洞察出未来的模式。如果仅从字面上理解这两个词,“科学”意味着通过系统研究获得的知识;“数据”则是由定性化或定量化变量组成的信息集合。因此,数据科学家的字面定义应该是:一个系统性地研究信息的组织与性质的人。尽管统计人员和其他研究数据分析的人也扮演着重要的角色,但是Anjul Bhambari所描述的数据科学家既是分析师,又是艺术家,其角色注定是变革传统数据的分析和使用方法。
商业社交网站LinkedIn的成功,很好地证明了数据科学家为商业智能所带来的重大利好。作为一家几乎纯粹依赖其3.8亿名用户相互联系所产生数据的企业,LinkedIn正在利用受过正规培训、有着强烈好奇心的数据科学家们不断探索大数据的世界。LinkedIn与Facebook、Google等其他大型知识型企业都在利用数据科学家对大量的杂乱数据进行结构化,确定数据的价值大小,以及变量之间的系统性关系。
KPMG近期对企业高管的一项调查显示,99%的受访者认为大数据分析对于制定次年的战略非常重要。预计到2020年,每天产生的企业数据将超过240EB,在这一时代背景下,对于掌握了从数据中提取价值洞见能力的数据科学家的需求比以往更加重要…但是,Venture Beat公司的Travis Wright在一篇文章中提到,对数据科学家的需求远远超过了供给,如果想跟上新型数据经济的步伐,仅美国的公司就需要雇佣14-19万名数据科学家。
令人讽刺的是,关于数据科学家的平均收入的数据却存在许多相互冲突的地方。不过,比较明显的是平均收入与对数据科学家的高需求是正相关的。如果雇主要求员工能够熟练使用数据挖掘算法、精通像R和Python这样的语言、又具备处理大型数据库(SQL或类似数据库)的经验,还得开发Java应用、处理NoSQL数据库(引用自某个职位要求,上述要求只占十分之一)——此外,还要能够将以上这些清楚地传达给非技术同事,那么平均12万美元的薪资看上去也就不那么过分了。
尽管数据科学家的角色与传统意义上的数据分析岗位有重合之处,但是区别也尤其明显。一名数据分析师或数据架构师能够从大规模数据集中提取信息。但是他们只掌握SQL查询命令和对数据进行切片的分析包。借助对机器学习的深刻了解和编程开发等方面的知识,数据科学家可以随心所欲地处理数据,挖掘出更深的洞见。他们摆脱了这些程序的束缚。普通的数据分析师会观察过去发生的事情,但是数据科学家必须具备长远的眼光,展望未来。通过应用先进的统计知识和复杂的数据建模,他们必须挖掘出数据中隐藏的模式,对未来做出预测。数据科学家所需要的技能成功的数据分析需要做到能够清洗、集成和转变数据 —— 这些都是数据科学家必须掌握的重要技能。将科学背景与计算分析技能结合在一起之后,你就能够“胜人一筹”。下面的图2列出了数据科学通常关注的几个领域。
图2.数据科学关注的领域
不过我们还是要更细致地探讨一下成为数据科学家所需要的实际技能。Mark van Rijmenam是Data Floq公司的CEO,为了能够开发出提出正确的问题并寻找正确答案的算法,他建议数据科学家掌握以下技能:统计技能、数学和伦理学技能,并且具备构建预测性模型的丰富经验。
来自LinkedIn的Ferris Jumah更是将所要求的技能进行了归类,尽管数据科学家可能需要的技能和担任的岗位角色纷繁复杂。
数据科学家必须做到:
以数学思维看待数据。学习诸如机器学习、数据挖掘、数据分析和统计学等技能十分重要。数据科学家需要从数学的角度对数据进行解释和分析。
使用一门常用语言,进行数据访问、探索和建模。掌握一门统计编程语言将是关键。R、Python或MATLAB等语言,以及类似SQL等数据库查询语言是最受追捧的技能。数据提取、探索和假设检验是数据科学实践的核心。
具备很强的计算机科学和软件工程背景。这需要掌握包括Java、C++或算法知识和Hadoop。这些技能将用于利用数据来设计系统架构。
与使用标准工具的普通程序员不同,数据科学家一般会使用各种各样的工具,而且工具时刻在更新。这是因为数据科学领域正在快速发展,许多新工具还远未成熟。尽管如此,下面我们还是精选了一些数据科学家常用的工具:
数据分析
在这方面,使用的工具其实就是数据科学家用于提取和分析数据的编程语言。一般来说是Python、R和SQL。
数据科学家可以选择自己用于提取和分析数据的数据库。处理合理大小的数据集时,最流行的选择是MySQL。进入大数据领域之后,他们通常会转向使用Hive或Redshift。
数据可视化方面最常提及的工具,是D3.js和Tableau。只要是你能想象出来的数据可视化方式,数据科学家都可以利用D3.js实现。Tableau是目前市面上最流行的数据可视化工具,支持从数百个输入源汇集数据,并轻松地将这些数据转换成可视图表。
这或许是每天新增工具最多的一个领域了。知名度最高、使用最广泛的工具可能是Scikit-learn,它利用Python进行机器学习。然后当然还有Spark MLlib,这是Apache推出的针对Spark和Hadoop的机器学习库。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30