
企业如何定位数据分析师?
网上曾经流传着这样一幅图片,数据分析师眼中的自己与他人眼中的数据分析师:
图片幽默的表现出了不同角度对数据分析师的理解和认知。我也曾听到不同的人讲过相似的观点:应该设计更好的系统产品来替代分析师的工作(或叫解放分析师)。在传统的理解和认知中,数据分析师的工作就是提取数据、设计报表,最多写写报告(那还是从报表中选取了一些图表放上来解读一下),从技术上看,这个环节简直是多余的,因为业务人员(如运营、产品、销售等)是可以自己解读数据完成业务分析报告的,如果能够解决取数、报表问题,那还需要数据分析师做什么呢?听上去很有道理,然而,如果我们追问一个问题:行军打仗时,参谋部存在的意义在哪儿呢?
现代战争中,情报的收集与展示都有自动化的机器完成,指挥官是决定作战计划的那个人,但参谋部依然存在。熟悉战争电影的同学可能想到:作战计划一般有很多套,最终被执行的只有一套,但每套计划的制定都需要经过严密的推演。参谋部的最主要的职责之一就是分析情报数据,经过军事推演后,制定各种可行的作战计划,指挥官则根据局势判断、取舍后确定最终的作战计划。(咱们在这儿就不讲抗日神剧中几个毫无准备的弓箭手轻松逃离准备充分且汉奸带路的鬼子中队包围圈的故事了,咱们只在人类的范畴内讨论此话题!)
参谋不直接带兵打仗,但要非常熟悉怎么打仗,参谋不直接决策,但要非常熟悉决策考量!
如果按照这样的思路,参照“参谋”的职责,我们试着理解数据分析师的核心职能是什么:
1) 用数据分析各种可能并给出分析结果(推演);
2) 根据数据分析情况建议各种策略(作战计划思路);
3) 监控策略/方案执行情况,给出总结及改进建议(战后总结);
依据这样的职责定位,总结一下数据分析师在工作中的基本职责,以电商企业为例:
1) 掌握数据分析技能,总结、发现数据规律;
2) 理解商业逻辑,依据数据规律,找出商业改进机会点,独立或合作制定业务改进计划;
3) 制定业务方案监控计划,及时给出总结及建议;
有“懂行”的同学说,别装13,不就是做报表写报告嘛!好吧,这个论断也不能算错,很多数据分析师的招聘JD中就清清楚楚写着:“根据公司需要设计并开发业务报表,完成业务分析报告!”怎么说呢,这个放到招聘JD中只能说是“概括性强”,公司内部岗位职责描述大可不必如此概况!
很明显,如果仅仅把这当作数据分析师的职责,90%以上的公司会讲:等报表数据弄准确了,数据部门能把需求及时完成了,各部门汇报数据不打架了,我再招数据分析师吧,现在离“用数据辅助决策”远着呢,花钱养着这些参谋大爷们……等等,游击队打仗就没有参谋了吗??好吧,确实没有,但有没有情报分析人员呢?兼职的也算啊。让项目管理的人员兼职做数据分析,为何不是数据分析的人员兼职去做项目管理呢?
互联网企业从诞生的第一天起,就需要有数据人员,区别只在于是其他人员兼职做数据分析,还是有专职数据分析人员。而数据工作的一类特性——数据工作贯穿企业几乎所有部门(尤其是互联网企业),决定了数据分析师的很多工作是直接汇报给CEO和管理层!理解了这个特性,对于很多招聘JD中出现要求“沟通强”“有项目管理经验佳”等就非常容易接受,因为在这些阶段,数据分析师就是要承担部分项目管理,营销策划,甚至产品设计的职能。这种情况在一个公司早期阶段或者公司新业务的早期阶段会大量出现,数据分析师面对这种现象必须有心理准备并积极学习应对。
将这些职能放到一起总结,数据分析之外,大概会出现如下几种要求:
1) 需求开发、需求梳理(早期,需求量过大);
2) 报表设计与开发(早期,缺少开发人员);
3) 数据仓库架构及数据流程设计(早期,缺少有经验的开发人员);
4) 报表口径统一,报表体系规划(早期没做好,中期混乱,无法依据数据有效决策);
5) 产品、市场、促销监控及改进建议推进(项目管理职能,推进很难,但如果能搞定,恭喜你,升职的日子不远了:));
6) 数据产品设计与开发(后期阶段,缺少专职数据产品经理);
好了,可以放到一起看看这些职责了,数据分析师眼中的自己,职责大概是:
1)利用各种分析工具,发现数据规律;
2)根据数据规律,给出商业改进建议;
3)监控商业改进执行情况,定期给出效果追踪。
好吧,这些我们都知道了,还是回到现实中来吧,大部分的企业,实际上对数据分析师的要求则可能是如下几种:
1) 报表类职责:
2) 分析类职责:
3) 其它类职责:
基于这些职责,数据分析师们则需要掌握几种技能,其中,不同的企业在不同的数据发展阶段,对工具的要求会有不同:
一个数据分析师在现代企业,尤其是互联网企业中的作用越来越重要,企业对数据分析师的要求也越来越高,本文只能从一个角度简单描述数据分析师的职责与企业定位之间的关系,如果有机会,后面希望能够再就企业需求多如何解决、企业数据工作的分工等话题一起探讨。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12