京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业如何定位数据分析师?
网上曾经流传着这样一幅图片,数据分析师眼中的自己与他人眼中的数据分析师:
图片幽默的表现出了不同角度对数据分析师的理解和认知。我也曾听到不同的人讲过相似的观点:应该设计更好的系统产品来替代分析师的工作(或叫解放分析师)。在传统的理解和认知中,数据分析师的工作就是提取数据、设计报表,最多写写报告(那还是从报表中选取了一些图表放上来解读一下),从技术上看,这个环节简直是多余的,因为业务人员(如运营、产品、销售等)是可以自己解读数据完成业务分析报告的,如果能够解决取数、报表问题,那还需要数据分析师做什么呢?听上去很有道理,然而,如果我们追问一个问题:行军打仗时,参谋部存在的意义在哪儿呢?
现代战争中,情报的收集与展示都有自动化的机器完成,指挥官是决定作战计划的那个人,但参谋部依然存在。熟悉战争电影的同学可能想到:作战计划一般有很多套,最终被执行的只有一套,但每套计划的制定都需要经过严密的推演。参谋部的最主要的职责之一就是分析情报数据,经过军事推演后,制定各种可行的作战计划,指挥官则根据局势判断、取舍后确定最终的作战计划。(咱们在这儿就不讲抗日神剧中几个毫无准备的弓箭手轻松逃离准备充分且汉奸带路的鬼子中队包围圈的故事了,咱们只在人类的范畴内讨论此话题!)
参谋不直接带兵打仗,但要非常熟悉怎么打仗,参谋不直接决策,但要非常熟悉决策考量!
如果按照这样的思路,参照“参谋”的职责,我们试着理解数据分析师的核心职能是什么:
1) 用数据分析各种可能并给出分析结果(推演);
2) 根据数据分析情况建议各种策略(作战计划思路);
3) 监控策略/方案执行情况,给出总结及改进建议(战后总结);
依据这样的职责定位,总结一下数据分析师在工作中的基本职责,以电商企业为例:
1) 掌握数据分析技能,总结、发现数据规律;
2) 理解商业逻辑,依据数据规律,找出商业改进机会点,独立或合作制定业务改进计划;
3) 制定业务方案监控计划,及时给出总结及建议;
有“懂行”的同学说,别装13,不就是做报表写报告嘛!好吧,这个论断也不能算错,很多数据分析师的招聘JD中就清清楚楚写着:“根据公司需要设计并开发业务报表,完成业务分析报告!”怎么说呢,这个放到招聘JD中只能说是“概括性强”,公司内部岗位职责描述大可不必如此概况!
很明显,如果仅仅把这当作数据分析师的职责,90%以上的公司会讲:等报表数据弄准确了,数据部门能把需求及时完成了,各部门汇报数据不打架了,我再招数据分析师吧,现在离“用数据辅助决策”远着呢,花钱养着这些参谋大爷们……等等,游击队打仗就没有参谋了吗??好吧,确实没有,但有没有情报分析人员呢?兼职的也算啊。让项目管理的人员兼职做数据分析,为何不是数据分析的人员兼职去做项目管理呢?
互联网企业从诞生的第一天起,就需要有数据人员,区别只在于是其他人员兼职做数据分析,还是有专职数据分析人员。而数据工作的一类特性——数据工作贯穿企业几乎所有部门(尤其是互联网企业),决定了数据分析师的很多工作是直接汇报给CEO和管理层!理解了这个特性,对于很多招聘JD中出现要求“沟通强”“有项目管理经验佳”等就非常容易接受,因为在这些阶段,数据分析师就是要承担部分项目管理,营销策划,甚至产品设计的职能。这种情况在一个公司早期阶段或者公司新业务的早期阶段会大量出现,数据分析师面对这种现象必须有心理准备并积极学习应对。
将这些职能放到一起总结,数据分析之外,大概会出现如下几种要求:
1) 需求开发、需求梳理(早期,需求量过大);
2) 报表设计与开发(早期,缺少开发人员);
3) 数据仓库架构及数据流程设计(早期,缺少有经验的开发人员);
4) 报表口径统一,报表体系规划(早期没做好,中期混乱,无法依据数据有效决策);
5) 产品、市场、促销监控及改进建议推进(项目管理职能,推进很难,但如果能搞定,恭喜你,升职的日子不远了:));
6) 数据产品设计与开发(后期阶段,缺少专职数据产品经理);
好了,可以放到一起看看这些职责了,数据分析师眼中的自己,职责大概是:
1)利用各种分析工具,发现数据规律;
2)根据数据规律,给出商业改进建议;
3)监控商业改进执行情况,定期给出效果追踪。
好吧,这些我们都知道了,还是回到现实中来吧,大部分的企业,实际上对数据分析师的要求则可能是如下几种:
1) 报表类职责:
2) 分析类职责:
3) 其它类职责:
基于这些职责,数据分析师们则需要掌握几种技能,其中,不同的企业在不同的数据发展阶段,对工具的要求会有不同:
一个数据分析师在现代企业,尤其是互联网企业中的作用越来越重要,企业对数据分析师的要求也越来越高,本文只能从一个角度简单描述数据分析师的职责与企业定位之间的关系,如果有机会,后面希望能够再就企业需求多如何解决、企业数据工作的分工等话题一起探讨。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01