
企业如何定位数据分析师?
网上曾经流传着这样一幅图片,数据分析师眼中的自己与他人眼中的数据分析师:
图片幽默的表现出了不同角度对数据分析师的理解和认知。我也曾听到不同的人讲过相似的观点:应该设计更好的系统产品来替代分析师的工作(或叫解放分析师)。在传统的理解和认知中,数据分析师的工作就是提取数据、设计报表,最多写写报告(那还是从报表中选取了一些图表放上来解读一下),从技术上看,这个环节简直是多余的,因为业务人员(如运营、产品、销售等)是可以自己解读数据完成业务分析报告的,如果能够解决取数、报表问题,那还需要数据分析师做什么呢?听上去很有道理,然而,如果我们追问一个问题:行军打仗时,参谋部存在的意义在哪儿呢?
现代战争中,情报的收集与展示都有自动化的机器完成,指挥官是决定作战计划的那个人,但参谋部依然存在。熟悉战争电影的同学可能想到:作战计划一般有很多套,最终被执行的只有一套,但每套计划的制定都需要经过严密的推演。参谋部的最主要的职责之一就是分析情报数据,经过军事推演后,制定各种可行的作战计划,指挥官则根据局势判断、取舍后确定最终的作战计划。(咱们在这儿就不讲抗日神剧中几个毫无准备的弓箭手轻松逃离准备充分且汉奸带路的鬼子中队包围圈的故事了,咱们只在人类的范畴内讨论此话题!)
参谋不直接带兵打仗,但要非常熟悉怎么打仗,参谋不直接决策,但要非常熟悉决策考量!
如果按照这样的思路,参照“参谋”的职责,我们试着理解数据分析师的核心职能是什么:
1) 用数据分析各种可能并给出分析结果(推演);
2) 根据数据分析情况建议各种策略(作战计划思路);
3) 监控策略/方案执行情况,给出总结及改进建议(战后总结);
依据这样的职责定位,总结一下数据分析师在工作中的基本职责,以电商企业为例:
1) 掌握数据分析技能,总结、发现数据规律;
2) 理解商业逻辑,依据数据规律,找出商业改进机会点,独立或合作制定业务改进计划;
3) 制定业务方案监控计划,及时给出总结及建议;
有“懂行”的同学说,别装13,不就是做报表写报告嘛!好吧,这个论断也不能算错,很多数据分析师的招聘JD中就清清楚楚写着:“根据公司需要设计并开发业务报表,完成业务分析报告!”怎么说呢,这个放到招聘JD中只能说是“概括性强”,公司内部岗位职责描述大可不必如此概况!
很明显,如果仅仅把这当作数据分析师的职责,90%以上的公司会讲:等报表数据弄准确了,数据部门能把需求及时完成了,各部门汇报数据不打架了,我再招数据分析师吧,现在离“用数据辅助决策”远着呢,花钱养着这些参谋大爷们……等等,游击队打仗就没有参谋了吗??好吧,确实没有,但有没有情报分析人员呢?兼职的也算啊。让项目管理的人员兼职做数据分析,为何不是数据分析的人员兼职去做项目管理呢?
互联网企业从诞生的第一天起,就需要有数据人员,区别只在于是其他人员兼职做数据分析,还是有专职数据分析人员。而数据工作的一类特性——数据工作贯穿企业几乎所有部门(尤其是互联网企业),决定了数据分析师的很多工作是直接汇报给CEO和管理层!理解了这个特性,对于很多招聘JD中出现要求“沟通强”“有项目管理经验佳”等就非常容易接受,因为在这些阶段,数据分析师就是要承担部分项目管理,营销策划,甚至产品设计的职能。这种情况在一个公司早期阶段或者公司新业务的早期阶段会大量出现,数据分析师面对这种现象必须有心理准备并积极学习应对。
将这些职能放到一起总结,数据分析之外,大概会出现如下几种要求:
1) 需求开发、需求梳理(早期,需求量过大);
2) 报表设计与开发(早期,缺少开发人员);
3) 数据仓库架构及数据流程设计(早期,缺少有经验的开发人员);
4) 报表口径统一,报表体系规划(早期没做好,中期混乱,无法依据数据有效决策);
5) 产品、市场、促销监控及改进建议推进(项目管理职能,推进很难,但如果能搞定,恭喜你,升职的日子不远了:));
6) 数据产品设计与开发(后期阶段,缺少专职数据产品经理);
好了,可以放到一起看看这些职责了,数据分析师眼中的自己,职责大概是:
1)利用各种分析工具,发现数据规律;
2)根据数据规律,给出商业改进建议;
3)监控商业改进执行情况,定期给出效果追踪。
好吧,这些我们都知道了,还是回到现实中来吧,大部分的企业,实际上对数据分析师的要求则可能是如下几种:
1) 报表类职责:
2) 分析类职责:
3) 其它类职责:
基于这些职责,数据分析师们则需要掌握几种技能,其中,不同的企业在不同的数据发展阶段,对工具的要求会有不同:
一个数据分析师在现代企业,尤其是互联网企业中的作用越来越重要,企业对数据分析师的要求也越来越高,本文只能从一个角度简单描述数据分析师的职责与企业定位之间的关系,如果有机会,后面希望能够再就企业需求多如何解决、企业数据工作的分工等话题一起探讨。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13