京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘能做点什么?
大数据是目前最时髦的词汇,正受到越来越多人的关注和谈论,大数据时代,数据挖掘是最关键的工作。
什么是数据挖掘?
简单地说,数据挖掘是从大量数据中提取或“挖掘”知识——《数据挖掘:概念与技术》。
IDMer认为,数据挖掘就是从数据里找规律。对于规律没有严格的界限,只要这个规律对于公司业务的理解和未来业务规划预测有帮助,这都可以算作数据挖掘。以电信公司为例,客户流失是运营商经常面临的问题,需要了解哪些客户容易流失,原因是什么,能不能在流失之前就找到他们,建立预警系统,分析流失客户和忠诚客户的差别是什么,我们称之为流失特征。通过数据挖掘找出这些特征后,就可以选出可能会流失的客户,争取挽留。那么规律,作为一种复杂的模式,在这个案例中就体现为流失特征。再比如企业通过分析销售数据,得出销售高峰出现在春节等节假日,这也算一种规律,可以帮助企业决定何时进行资源储备,人员配备以及营销活动等。但是这种规律不需要通过复杂的数据挖掘,通过看销售数字就可以得出来。
数据挖掘能做点什么?
数据挖掘的任务和功能一般可以分为两大类:描述和预测,描述类挖掘主要是展现数据集中数据的一般特征,预测类挖掘是在当前数据上进行推断,以进行预测。
1、数据描述、特征和区分
是对数据的基本特征进行概括和总结,能够实现对数据多维度、多层次的汇总,得到数据分布特征的精确概括。数据特征化的输出可以用多种形式提供,例如饼图、条形图、线图、多维数据立方体OLAP、含交叉表的多维表。结果描述也可以用概化关系或规则形式提供。
2、分类
主要目的是通过向数据“学习”,分析数据不同属性之间的联系,得到一种能够正确区分数据所属类别的规律。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。
3、回归
反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。
4、聚类分析
聚类是一种在没有先验知识条件下,根据某种相近程度的度量指标,对数据自动进行类划分的技术。所形成的类别内部数据的结构特征相近,不同类之间的数据结构特征有较大差异。其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。
5、关联分析
是指通过数据分析,找到事物之间的关联规则。包括简单关联规则和时序关联规则。即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。例如“90%的顾客在购买面包和黄油的同时也会购买牛奶”。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。
6、噪声、异常值分析
用于分析的数据中可能包括一些另类的对象,它们与数据集的一般特征不一致,经常称之为噪声、孤立点、异常值。大部分数据挖掘方法将这些数据直接丢弃,然而,在某些应用中,如欺诈研究中,罕见的事件可能比正常出现的事件更有趣,需要对这些对象进行单独的分析。
数据挖掘只是解决商业问题的一种手段,在解决实际问题中,需要与其他方法相结合,将业务问题转为数据挖掘问题,这需要业务部门的配合。数据挖掘只是提供了一个良好工具,并不是万能的。它仍然需要数据分析人员了解系统的业务,理解系统的数据和弄清分析方法,数据挖掘得到的模型必须要在现实生活中进行验证。数据挖掘永远不会替代有经验的商业分析师或管理人员所起的作用,它只是提供一个强大的工具。数据挖掘不会在缺乏指导的情况下自动发现模型,数据分析师必须为数据挖掘工具提供指导。虽然数据挖掘工具使用户不必再掌握艰深的统计分析方法,但需要用户清楚工具是如何工作的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12