
大数据:制造业业务增长的指南针
当今,大数据分析已不再仅限应用于对过去情况进行表述,而是更多地用于来对未来情况进行预测,进而实现对风险的规避,并加深对逐步延伸的价值链的理解,从而提高用户体验。于制造业而言,大数据分析更是带来了制造行业研究以及趋势分析的全新维度。通过全新多维度的功能和已然拓展的领域来看,数据已成为引领制造业成长的指南针。
大数据分析的根本力量在于数据的质量,而数据来源自然成为重中之重。目前,制造商所面临的海量数据可谓让人应接不暇。
数据来源是什么?
海量数据于外部、内部或由机器与机器间的互动中产生。同样,正是这些数据为制造商提供了可供于对客户、产品、流程、员工和设备进行了解所需的全部信息。
外部数据来源:通过用户组、社交媒体、兴趣组或调查报告构建用户数据;第三方调查报告、网站和呼叫中心所提供的中立的数据收集平台(此种数据收集方式采用匿名方式将有效提高反馈率),同样,此种方式可用来构建准确的用户及需求文件,其中包括主观的个性化属性,如色彩、设计偏好、共同的购买动机与评价标准等。
内部数据来源:现代的集成ERP系统具备提供企业内所有层面和部门的,包括产品、流程和人员在内的所有数据的能力。通过ERP系统收集而来的数据,可精确到每分钟的实时报告、统一的数据库并能对过去相关数据进行追溯,且具有将其精确到细节的能力。
机器到机器:智能传感器和物联网能够直接从机器和设备收集数据并传送到ERP系统、EAM系统或其他企业应用平台。内置的低成本传感器能够检测到大量信息,包括位置、重量、温度、震动、流速、湿度和平衡度。这些时时被监测到的数据可用于确认及预测设备的性能问题并对其是否需要服务、维修和替换进行判断。通过这些,制造商便能及早发现可能出现的问题,并在事故发生之前采取措施进行预防以阻止其发生。
利用数据做什么?
多年来,预测客户趋势、准备库存、维持足够的货源一直是制造商首要考虑的几大因素。但随着供货速度和及时交货的重要性日益增加,准确预测未来需求的能力也随之增强,由此,选择哪个或是哪几个最适合的影响因素变得愈发关键。显然,在这种情况下,单一数据来源肯定不足以满足当前状况。
预测分析这一活动切实将大量来源的数据转变为了具有实际指导意义的未来行动蓝图。同时,目前现代商业智能解决方案也已可以提供高准确度的预测趋势。
由于在任何数据倡议中,输入结果均不可能超过输出。所以,对于制造商而言,想要由海量数据中提炼出具体影响因素作为未来行动的最佳指引,必须要认真选择可靠的数据来源。
预测分析,让数据变得有价值。而良好的预测能力为制造商带来了诸多好处,如确保全体员工就绪、更好地计划即时物料库存水平、准确理解产品生命周期等。同样,预测客户需求大大加强了制造商的市场竞争力,使其可先于竞争对手在竞争激烈的市场中推出新产品,在占据市场主导地位这场竞争中占得先机。
良好的开始是成功的一半,占得先机后,成功的产品将在接下来的竞争过程中扮演更为重要的角色。而成功的产品,其创新在很大程度上依赖于制造商对市场偏好和需求的准确解读。设计工程师需了解用户的痛点,从而衡量新产品的潜在价值,并辅助确定研发投入的方向。大数据,正是实现这一点的关键。
大数据能带来什么?
答案是:提供良好的投资回报率并推动企业业务增长。
大数据如何提供很好的投资回报率并推动企业业务增长?如果想充分利用大数据的潜力,制造商必须回答这个问题。
大数据就像指南针,它提供方向的指引,但并不能凭空增加销售或是赢得更多客户。无论是通过物联网收集到的机器的数据,还是来自在线网站的客户数据,收集数据都并不是最终目的。数据必须转化为行动,才具有价值。而正是该转化过程,是一需要认真研究细节并对相关数据深入了解的过程。而这恰恰是很多制造商在其大数据策略上所欠缺的部分。
通过认真的分析,数据能够被充分利用以认知、分析和培养机会,帮助制造商确定新的目标地理区域、扩建适合的市场、挖掘客户、构建良好的客户关系、创新、优化产品生命周期,提升附加价值以及提高利润空间。
在制造业领域有着多年最佳实践的Infor公司提供了一系列协同商务应用软件及其相关服务,这些解决方案帮助制造商为高速的企业发展打下了必要而扎实的基础,在全球市场中竞争,并在外包业务中获利。
此外,大数据分析的实践与云计算也有着密切的关系。Infor CloudSuite是第一个通过亚马逊网络服务(Amazon Web Services, AWS)云提供的针对特定行业的应用套件,是拥有深厚行业功能性和灵活性、基于订阅、交付模式,可显著降低前端IT支出的出色软件,在大数据分析解决方案上面也将起到重要作用。
大数据时代已经到来
综上,制造商必须拥抱大数据时代,以此来保持竞争力。在大数据时代与智能制造、“互联网+”、“中国制造2025”交织的时代,制造业的新需求需要新产品来满足;新的时代诉求需要产品进行良好的集成与互联,所以要将目光置于物联网概念;同时,产品需要深化、升级,而这三方面,正是Infor强调且将持续付诸努力的三方面,只为走好“最后一公里”。未来能够赢得市场的,必然是能够充分利用捕捉到的客户、产品和设备数据,提高创新能力,让客户满意,并能更快地带来更多好产品和服务的制造商。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14