
小白学数据分析--付费用户生命周期研究
付费用户其实存在一个付费周期转化的问题,直接指标可能就是付费渗透率的问题,然而在此背后其实还有更深入的问题。我们经常遇到的是推广渠道获得的新用户,且这批用户进入游戏的状态。其实在付费用户问题研究方面,本质上是类似的。对于广告网络,渠道带来的新用户而言,我们判断了新用户在随后的留存情况,今天我们研究的是当一个用户付费后,则是另一次“新用户”在随后留存情况的分析。换句话,我们把付费用户当作“新用户”开始研究留存,也就是付费留存。
付费留存概念
付费留存概念这一点,对于大家是不难理解的,实际上我们能够判断用户随后的付费留存率是多少。但它与付费用户的生命周期其实是存在关系的。
注:留存问题的分析不是停留在一个表面问题的解析上,在背后其实我们可以看到,我们对于每一个发生状态转移的用户群体都可以做类似的留存模型分析,比如我们今天提到的付费用户的留存分析,还有比如当我们发现付费用户累计付费达到了某一个额度后,随后用户的留存表现,这都是对固定用户群的在此留存解析,留存问题不是一个停留在表层的计算,其实是代表了一种分析思想的呈现。或者我们提到了那些跨过新手引导阶段(或者达到某个等级)的留存表现,本质上都是我们对于一个用户群体的划分,决定了留存的计算模式。
付费用户留存模型
在有了刚才提到的付费留存后,接下来我们将重点分析用户付费留存质量。我们就按照每天来计算,我们会发现今天的付费用户中,会有两部分人构成,一部分是新增付费用户,另外一部分是之前的活跃付费用户,但是活跃付费用户其实是由之前不同时间点的新增付费用户在这一天又进行了付费的累计加和组成。从这个角度我们就可以计算出来每天的付费用户贡献度的问题了,一个典型的问题就是,今天100个付费用户中,20个是本日新增,80个是老付费用户,这些付费用户其中近7天中付费的有40个,剩下40个是7天之前有过付费,且在今天有付费行为。在这个简单的逻辑中,我们看到了今天的付费用户有40%来自于7天之前,且能计算出来这些40%用户的贡献收入。
这种做法的好处是把很多之前的问题绑定到一起来看待。一个典型的场景就是,在最初我们考察一个阶段新用户的+1或者+3留存率的同时,可以对这些几日留存用户的付费进行留存在跟踪,这个过程复杂,但是最后可以很快的衡量用户质量效果好坏。
回头继续刚才的计算,我们会发现一些显著的特点,比如一般而言付费用户群中,最开始新增比例会很大,而老付费用户比例很低,然而随着时间的推移,这个老付费用户比例会逐渐变大,从10%不断变大,到了一个阶段,不在变化,之后可能是下滑,也可能是提升,而这是一个形象的付费用户生命周期的直接立体。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12