京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从数据到知性 大数据的生存进化之路
这几年,大数据突然成了商业社会上的弄潮儿。似乎,一夜之间,大数据就像明星一样红遍大江南北。以前,只有在数学、统计、计算机等专业领域谈到的数据,现在已经“飞入寻常百姓家”。大数据的各种应用、研究与实践纷纷出现,名之为大数据的公司也是雨后春笋般涌现。不过,对于普通人而言,用具体的例子可以更好地解释它。
数据是信息的表达,它的出现甚至比人更为久远。在“宇宙大爆炸”的研究过程中,美国物理学家伽莫夫于1946年正式提出大爆炸理论,认为宇宙由大约140亿年前发生的一次大爆炸形成。后来,哈勃通过望远镜观测到“红移现象”——就是星系正在远离我们,表明宇宙正在膨胀。通过测量光谱中的特征谱线的位置,可以推算出其以前的位置。由此,我们可以推算出宇宙的大致年龄。宇宙中的每个物体都带有信息,而信息会通过数据来表达。人类的智慧在于可以通过收集数据去认识一切。假如数据在宇宙诞生时就随之出现,那么毫无疑问它的“年龄”比人类大得多。
《在科技想要什么》里,美国科技哲学家凯文·凯利就提出了“科技也是有生命力的”的观点。他认为,传统上,人们只把植物、动物、原生生物、真菌、原细菌、真细菌称为生命。如果重新审视“生命”,那么科技或者技术可被称为“第七种生命元素”。原因在于技术是生命的延伸,它的演进与生命的进化及其相似。那么依照这样的观点,我们完全可以把数据称为“第八种生命元素”。人每时每刻都会散发出信息,比如你的身体、你的行为甚至你的思想。通过工具,我们可以记录下你每时每刻的呼吸、心跳等许多身体数据,甚至连行为、思想也可以通过一些方法测量出来。在《智慧社会》里,美国的全球大数据权威阿莱克斯·彭特兰通过社会计量标牌来测量人们的行为。这个设备仅有卡片大小,配备了测量佩戴者运动的传感器、捕捉声音的麦克风、检测附近同类设备的蓝牙,以及记录面对面交流的红外线传感器。这个东西功能异常强大,比如在打扑克时,这款设备10次有7次可以很准确地判断某人是否作弊;佩戴设备的人能够在5分钟内预测谈判中的赢家。
以前限于技术和发展程度的限制,人们对数据并不重视,也没有认识到数据的价值。但是现在通过技术手段,我们完全可以收集人类的一切数据,并对数据进行整理、分析和总结,从中发现驱使人类行为的背后因素。也就是说,我们可以通过数据来观察人类。
举一个例子,就是谷歌流感搜索与预测系统。2009年出现了一种新的流感病毒——H1N1,迅速席卷全球。因为它结合了禽流感与猪流感的特点,传染力很强,破坏力极大。更糟糕的是,目前还没有对抗这种病毒的疫苗。美国政府要求医生在发现新型流感病例时要及时告知疾控预防中心。然而从人们发现自己患病到医院再到疾控中心,时间会拉长,然而短短的时间新型流感可能已经爆发。这对政府、社会和国家来说,将会带来巨大的损失。但是,谷歌却比政府做得更好。谷歌公司把5000万条美国人最频繁检索的词条和美国疾控中心在2003年至2008年间季节性流感传播时期的数据进行了比较,他们希望通过人们的搜索记录来判断这些人是否患上了流感。他们的预测结果和官方数据的相关性达到97%。因此,2009年流感爆发的时候,谷歌成了一个很有效、很及时的指示标。
现在,不管是企业还是公司,手里都有巨量的数据。用于企业,海量的数据是企业未来的宝藏;用于社会,海量的数据可以为人们提供更好的生活和公共服务。以美国为例,在2014年,美国国税局通过一个名为“Get transcript”的工具将纳税人的信息数据加以共享,纳税人可以通过它获得他们自己最近三年的纳税记录。个人纳税者可以借此下载过去的纳税申报单,这使得居民进行抵押、学生贷款、商务贷款等活动与填写纳税表变得更加便捷。
如今,大数据相比以前的简单数据,有三个特点:数量大、种类多、速度快。数量上,2011年新生成的和复制的信息量估计超过了1.8ZB(泽字节);而在2013年这一数字估计超过4ZB。要知道,1ZB等于1021 个字节,相当于存储323兆份列夫·托尔斯泰所著的1250页的《战争与和平》所需的容量。种类上,从农业生产到餐饮再到医疗保健,任何行业都会产生越来越多的数据。速度上,数据的产生更是以指数级增长,数据的产生和更新不断加速。我们可以推知,数据的更迭会加速,就像人类的发展一样。假如把几百万的历史比作一小时,那么人类的辉煌却产生在最后几分钟。不得不惊叹,信息、技术和数据的变化远远超出了人类。以百度为例,它有一个全国迁徙动态地图,随时可从网上看到人们迁入和迁出的省份和城市。通过人们的手机搜索记录,百度可知道人们现在的位置和要去的地方。所有的数据经过收集和汇总,就能变成有价值的东西了。
大数据到底会如何进化?这是值得让人深思的。原始的数据就是一些简单的数值、记号等,通过大量的收集相关数据,并进而分类,原始的数据就变成对人们有用的信息了。再通过对信息进行整理、赋予内涵,发现其中的规律性,就变成一种有用的知识了。有用的知识能够为为人们提供一种行动方案,这样知识就成为知性的。由此,我们可见一条清晰的数据生存进化之路:“数据——信息——知识——知性”。如果说,以前,世界的原始动力是上帝,那么,21世纪,驱动世界运转就是数据了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14