
同期群是一种用户分群的方式。
同期群按用户的新增时间将用户分群,得到的每个群叫一个同期群。
举个例子:
从上帝视角看,对地球这个产品的用户(即人类)的进行划分,得到的同期群就是「70后」、「80后」、「90后」、「00后」……(按新增即出生时间划分)。
对您的产品来说,对用户划分得到的同期群就是「本周新增的用户」、「上周新增的用户」、「上上周新增的用户」……当然也可以按天或按月划分,时间颗粒度可大可小,但重要的是按新增时间划分。
同期群分析是指将用户进行同期群划分以后,分析和对比不同同期群组用户的相同指标,这套分析方法就是同期群分析。
要点:
对用户进行同期群划分
对比不同同期群组(比如本周新增用户和上周新增用户的)
的相同指标(比如注册转化率)
为了便于理解,这里举几个同期群分析例子以供参考:
| 例1 |
现象:一个App,某一天有100位新用户安装并“首次”使用,一天后还剩98人用,两天后…三天后……N天后还有95人在用。
结论:这个产品的粘性非常非常好,几乎全部用户都留存下来,没有流失。
| 例2 |
现象:还是这个App,3月份的新增用户有XXX人,其中只有3%的人安装了第二天还在用。经过运营的改进,4月份的新增用户有YYY人,安装第二天还在用的人提升到了15%。又经过产品改进,5月份的新增用户有ZZZ人,安装第二天还在用的人提升到了30%。
结论:改进前,这个产品非常糟,第二日流失率相当高;但多次产品改进后,其用户粘性得到了大幅提升。
| 例3 |
现象:某电商应用,首次产生购买行为的用户:在“首次购买”之后第一个月内平均买买买10次,在之后第二个月内平均买买买8次,但到了第三个月,平均买买买不足1次。
结论:用户的购买行为在首次发生2个月后骤降,应进一步分析背后原因,并加以改善。
进行同期群分析最重要的原因是:
同一项产品改进,对不同同期群中的用户,产生的影响是不同的,分开衡量才更能反映真实的情况。
举例来说:
「计划生育」这项伟大的产品策略,只影响「50后 ~ 90后」几个同期群中的用户。因为:计划生育开始实施时,50前的人们已经过了生育年龄,而计划生育结束(全面放开二孩)时,00后还未到生育年龄。
对于产品来说也是如此:
如果你为产品增加新手引导,那么只对之后新增的用户(同期群)产生影响,而不会改变老用户的行为;
如果你准备发放优惠券,那么对刚刚注册的用户和已长期使用的忠实用户,产生的效果会有差别;
……
同期群分析是一种分析方法,但更重要的是其背后的思考方式。
所以,请确保你已经充分理解了同期群的概念、同期群分析的基本思路以及为什么应该采用同期群分析(如果还不清楚,请重新、反复阅读前文)。
一旦你掌握了它,只要有合适工具(比如诸葛io)的帮助,您几乎可以在任何场景下使用它:
衡量产品业务的整体进展;
评估产品改版的效果;
优化产品的用户体验;
寻找产品改进关键点;
提升用户参与度;
……
总的来说,所谓同期群分析方法,就是将用户按初始行为的发生时间进行划分为群组。
对处于相同生命周期阶段的用户进行垂直分析(横向比较),从而比较得出相似群体随时间的变化。如上图的例子表明:从初始行为开始,用户的使用频率在逐渐降低。
通过比较不同的同期群,可以从总体上看到,应用的表现是否越来越好了。从而验证产品改进是否取得了效果。
现在,你能理解同期群分析了吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14