
小白学数据分析--ARPDAU的价值
本文就这个问题给大家解析一下ARPDAU。在讲ARPDAU之前,有两个概念大家应该很清楚,一个是ARPU,另一个是ARPPU,如果有不清楚的同学请查看《移动游戏数据分析白皮书》。
首先我们明确ARPDAU的定义:日活跃用户的平均收益,Avg. Revenue Per DAU;计算方式为,ARPDAU=每日总收入/每日活跃用户数。
为什么要有ARPDAU?
在移动端市场由于移动游戏的用户忠诚度不够高,流动性强,手游产品生命周期短,推广费增长迅速、推广周期短的因素所以我们不能再以ARPU或者ARPPU这种按周或者月为维度的衡量方式来进行计算。ARPDAU其实是在更加短的时间间隔内对游戏的收益能力与用户量之间寻找一个桥梁。
从下面的公式中可看到其作用:
Revenue=DAU*ARPDAU
上述公式是对每天收入的一种计算模式,如果按照用户生命周期来做衡量则变成:
E_Revenue=DAU*ARPDAU*E_LT
注:E为期望,LT为生命周期
综上我们可以得到,在用户规模和平均收益固定的前提下,可以根据生命周期长度的变化来确定收入规模,这点其实是我们平时最常去考虑的。
其实上述公式在海外已经多次被讨论过,用户规模、用户生命周期、产品质量和渠道推广这几点都是对这个公式的直接反馈。就ARPDAU来看,我们可以理解为下面的一句话:每当游戏产生一个有效的活跃用户,则单日为游戏贡献收入为ARPDAU,如果有效活跃用户的生命周期为LT,则单个用户全生命周期内贡献的收入为LT*ARPDAU。
由此可见,ARPDAU已成为衡量游戏收益能力的一个新指标。ARPDAU直接反馈在推广阶段,是一个有效活跃用户预期收益能力的表现。为什么这样说,因为一个有效活跃用户每活跃一天产生的收入就是ARPDAU,如果留存效果比较好,生命周期比较长,那么单个活跃用户在生命周期内贡献的收入就是ARPDAU与LT的乘积。这一点如果和CPA结合起来,就可以去衡量近来的一个有效CPA与ARPDAU*LT之间的大小。
DAU
无论是重计费游戏还是轻计费游戏,都想把用户规模做到一定的量级。从这个公式中能够看到,在ARPDAU较低的情况下,生命周期长度和用户规模都成为保障收入的支撑;其次有效用户群不仅代表推广阶段较好的用户质量,同时也是产品质量的重要体现。
就DAU而言,我们需要进一步了解DAU的结构和质量。因为DAU是最直接影响未来的用户生命周期和提升付费概率的因素(比如DAU中,优质用户不断的积累)。
LT
用户生命周期,一方面是对近来推广的用户质量体现,同时也是产品黏度和质量的重要衡量指标。如果要在三个参数打上标签,我觉得下面的标签算是一个例子:
ARPDAU
Jon Walsh说,“从游戏类型来看,有的游戏属于高转化率游戏,这类游戏付费转化率高,但是ARPPU低;有的游戏属于高付费游戏,这类游戏付费转化率低,但是ARPPU高。“不过如果你去从ARPDAU的角度去看待的时候,你会发现不必考虑付费用户的付费结构和规模,从而快速通过生命周期和规模衡量收益能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12