
小白学数据分析--基于数据驱动的最佳渠道评估策略
对于游戏数据分析来说,我们要从很多方面下手,具体从数据分析角度来说,作为游戏CP需要作三块工作,第一是游戏推广,第二是游戏质量,第三是游戏运营,就这三点来看,推广是未来游戏是否有稳定人气,获得稳定收入的关键一环。
关于手机游戏的渠道分析,是很重要的分析方向,对于这一点,其实无论是端游,页游还是如今火热的手游都是一样的,也确实是作为游戏CP很头疼的事情。原因很多,就手机游戏来看,比如苹果商店的封闭性,不能进行多渠道的转化追踪;而多渠道时(比如国内现在的多个安卓渠道),追踪转化分析又太过麻烦,基本上每家的游戏少说也有20+的渠道。这点导致了,我们在做安卓市场时,面临适配,系统,分辨率等等问题。所以大家都选择在ios上先发和投入,如果OK,在进行下一步的研发运营。因为会觉得,少了适配等一些列的硬伤,倒是做起来比较容易。
然而这点其实又规避了另一个问题,那就是,国内现在无论在官方的ios商店,还是第三方的市场商店,解决了适配,但是依旧要面临对渠道的追踪。因为尽管游戏下载的最终入口是在官方[未破解情况下],抑或是第三方的破解渠道,作为CP必须面对的就是渠道转化,用户质量,谁都不想自己做一笔糊涂账。实则我们的研发之路避开了机型适配等问题,但是却面临渠道转化的障碍,进而就是如何进行优化投放。
既然大家现在很关心渠道推广优化,那么以上的问题就必须有个解决的办法。这个解决办法就是如下的最佳渠道评估策略。
所谓最佳渠道评估策略有三部分构成:
数量:
渠道获取用户能力
作为渠道而言,对于游戏的首要价值,就是大量的用户资源,这点成为了目前粗放推广最为关注的部分,因此成就了今天很多的大渠道,也因此使得很多小的CP没有竞争实力,推广上架无比艰难。
数量分析揭示了渠道的用户获取能力,再更加实际的来说,可以探测用户对渠道的粘性和忠诚度,这点对于渠道推广是有帮助的,因为如果一个渠道本身用户的成长体系不完善,不存在具有粘性的核心用户群,那么给予CP的用户资源也是有限的。
在这数量这一最粗放的力度上,我们将注重关注以下的指标:
以上几个指标,似乎是大家很常用的,但是仅仅到这个层级是远远不够的,因为我们并没有准确的去监控和识别用户的行为信息,仅仅是数量级的分析。实际上,对于某些大渠道来说,我们可以关注,玩家在活动或者更新周期,返回渠道的概率分析,这点也是值得的。
一般而言,我们可以通过安装后的注册转化率来了解渠道用户是否目标用户,当然这只是分析目标用户的第一个重要标准,同时这个转化率连带的会引发很多的实际的问题进行分析。
以上是第一个层级的分析策略,当然基于以上这些因素的分析,这里不再展开,可以根据自己的实际需要,有目的的进行实施就可以了。
质量:
玩家参与游戏情况
目前的移动互联网环境下,很多的游戏产品对于渠道推广投放,有很多是停留在数量这个层级上,稍微好一些的会关注渠道收入贡献情况,这点也是在渠道能够带来收入的前提下来进行的,不过我们似乎忽略了一些问题,那就是,在收入之前,连渠道用户的质量都不了解,就不能谈收入。因为这种情况下,会一直存在CAC〉LTV,即单用户的贡献远远小于用户获取成本。
因此,质量的分析,快速的优化,决定未来投放渠道的收入增长潜力。
以上四个指标作为质量控制的重要要素存在,帮助我们在渠道投放初期就要去了解渠道的投放质量,这点实际上相比较玉前一个层级,重点解决投放质量的问题。
平均日活跃用于了解该渠道的长期日活跃走势和平均水平,而一日玩家比例了解新增玩家中,只有在新增当天进行过游戏的玩家的比例,由于这点对于后续的留存率影响很大,所以必须要去了解留存率的水分有多少,真实的用户留存是什么水平。有关于这点在后续的文章中会继续与大家探讨。
刚才谈到了留存率,作为质量控制的一个节点,次日留存率水平在衡量渠道质量这方面还是有作用的,这是衡量渠道质量必须要考核的指标之一。
最后是首周付费比例,这点是辅助的分析渠道接下来营收能力的一个重要因素,因为渠道的用户资源最终还是要转为收入,不能完成这一步,不能完全判断一个渠道质量的价值。首周付费比例,决定了渠道推广后,用户的付费质量情况,这点可以和非推广时期的用户首周付费比例作一个对比分析。
收入
渠道收入能力情况
一如刚才所说的,渠道的用户资源,最终还是要转化为实在的收入,这是体现渠道价值的最佳方式,在这点上,我们重点覆盖以下的指标:
这几个指标的使用应该来说大家很熟悉,刚才也谈到了游戏产品的终极形态一定是要营收的,这是我们做游戏的目的,在这点的关注上,其实我们不必聚焦于详细的细分数据,只需要知道渠道究竟有多大的收入价值就可以了。当然在长期持续的过程中,我们要不断的监控和衡量渠道收益能力,做好用户获取成本和单用户收益之间的杠杆。
而以上所说的,实在宏观全局上,了解渠道与渠道之间的差异。实际上在渠道整体的策略上存在一个完整的闭环过程。
我们刚才的策略是构建了一个完整的基于渠道分析的数据体系,也就是做渠道分析该去看那些指标,以及如何作出分析。后续的其实还有详细的渠道分析,真正从具体的业务逻辑上实际分析把控,说的简单点,了解一些渠道本身的特点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14