
数据价值挖掘之道:人工智能成新宠
人工智能自1943年诞生以来,在几十年的发展历程中经历了多次潮起潮落,人们却从未停止过对人工智能的研究与探索。而今年的AlphaGo人机大战又将人工智能推向了一个新的高潮,人工智能也已经从实验室逐步走向了商业化。
在互联网和移动互联网的新生态环境下,云计算、大数据、深度学习和人脑芯片等因素正在推动着人工智能的大发展。未来大数据将成为智能机器的基础,通过深度学习从海量数据中获取的内容,将赋予人工智能更多有价值的发现与洞察,而人工智能也将成为进一步挖掘大数据宝藏的钥匙,助力大数据释放具备人类智慧的优越价值。那么,在未来,人工智能会向着什么方向发展?人工智能真的能够超越人类吗?
近日,由百分点集团、中国人民大学、北京大学、伦敦政治经济学院与统计之都共同主办的中国最大的大数据盛会“大统计与数据科学联合会议”在北京召开。在百分点集团与北京大学携手举办的“2016百分点数据与价值国际论坛”上,北京大学数学学院信息科学系教授林作铨、大规模机器学习专家王益、中科院模式识别国家重点实验室副研究员刘康等学者和专家,与百分点集团研发总监苏海波一起分享了知识表示、深度学习、自然语言处理等人工智能的相关技术与应用,同时还共同探讨了大数据的应用创新及最新趋势。
如今人工智能产业格局的生态圈正在逐渐清晰化,整个产业结构分为基础、技术和应用三层,基础层指的是芯片开发、存储设备开发和计算平台等,譬如地平线机器人和百度大脑就处于这一层;技术层指的是基于深度学习的语音识别、人脸识别等智能算法,譬如科大讯飞、商汤科技;应用层指于技术层为用户提供智能化的服务和产品,譬如小i机器人、出门问问。
北京大学数学学院信息科学系教授林作铨认为:“人工智能的原始目标有两个:一个是要通过计算机来模拟人的智能行为,来探讨智能的基本原理,这是真正关心的问题。第二个目标是把计算机做得更聪明,计算机变得更聪明,我们人就可以更傻,就是体验更好。”
随着搜索引擎的飞速发展,将互联网文本内容结构化,从中抽取有用的概念、实体,建立这些实体间的语义关系,并与已有多源异构知识库进行关联,从而构建大规模知识图谱,对于文本内容的语义理解以及搜索结果的精准化有着重要的意义。然而,如何以自然语言方式访问这些结构化的知识图谱资源,构建深度问答系统是摆在众多研究者和开发者前的一个重要问题。
对此,中科院模式识别国家重点实验室副研究员刘康表示:“我们做问答其实是想用人工智能的技术来做这样的问题,不管是检索式问答还是社区QA的问答,都是基于关键词的匹配和检索,其实很难做到对于数据真正的结构化的理解。问答的脉络可分为三类:一是基于检索式的问答,二是基于关键词检索或者是语义匹配的技术,三是基于知识库的问答系统,核心就是语义解析和推理。目前,深度学习在自然语言理解领域,还有很长的一段路要走。”
在论坛中,大规模机器学习专家王益分享了关于“通用计算机群和分布式机器学习”的主题,他表示,当我们说大数据的时候,不同行业有不同的说法,在互联网行业,凡是能说出有多大的数据的都不是大数据,互联网行业的数据是无穷无尽的。而要真正用好这些数据就一定会用到分布式存储和计算。实际上,在互联网和大数据环境下,首要目标是“能算大”.而“大”不是“算得快”就能做到的,而是要能形成业务闭环--运行Web服务、收集用户行为数据、通过机器学习理解用户、将学习得到的“知识”反馈到Web服务中以提升服务质量。
针对人工智能跟大数据到底是一个什么关系的问题上,百分点集团研发总监苏海波表示,人工智能给大数据带来的更多的是基于,而不仅仅是挑战。大数据对人工智能更多是一种推动,推动人工智能的发展。如今,人工智能已经开始慢慢深入到各个领域,我们能够利用人工智能技术,去提高我们的效率,去辅助人类,帮助我们进行洞察,做出正确的决定。
看百分点大数据价值挖掘之道
如今,大数据技术正在不断向各行各业进行渗透。深度学习、实时数据分析和预测、人工智能等大数据技术逐渐改变着原有的商业模式,推动着互联网和传统行业发生着日新月异地变化。但与此同时,非结构化数据难以利用,数据与实际商业价值不匹配的现象在很多企业依然存在,只有不断推进大数据技术与场景创新,才能真正推动大数据应用的不断落地。
为了帮助企业用户挖掘大数据价值,百分点打造了涵盖大数据技术层、管理层和应用层的完整产品体系,能通过大数据操作系统(BD-OS)、用户画像标签管理系统,以及应用层的推荐引擎、分析引擎和营销引擎,帮助企业更好的管理数据资产,全方位的搜集用户数据、进行深度整合,并借助数据分析对用户行为进行精准的洞察、分析,为企业的产品研发、经营策略制定提供坚实的数据支撑,从而更好地实现从粗放型营销向精准营销的转变。
百分点集团研发总监苏海波表示:“针对传统企业,我们要提倡互联网+,以互联网+大数据为基础,帮助传统企业提升效率,帮助他们挖掘数据价值,从而提升业务价值。”
与传统的数据管理系统相比,百分点大数据系统具有技术、应用、数据这三大核心竞争力,还创新的整合了标签体系、用户画像,用户群管理、数据输出、审计管理,智能推荐、价值分析等功能,系统能够通过企业全触点、全渠道用户数据整合,多维度洞察用户特征,满足全面性、深入性、易用性这三个维度的大数据应用要求。
写在最后,我相信,未来五年是人工智能进入各个垂直领域的加速期,“人工智能+”将引领产业变革,金融、制造、安防等领域将会诞生新的业态和商业模式,从而更好的实现信息技术由IT向DT的转变
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10