
网站数据分析_数据分析师
数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。本文介绍的是网站的数据分析,来帮助你了解更多的用户,一起来看。
网站的数据分析系统,是对网站访问信息的记录和归类,以及在此基础上的统计分析,如网站访问量的增长趋势图、用户访问最高的时段、访问最多的网页、停留时间、用户使用的搜索引擎,主要关键词等,这些可以称为网站访问数据的基础分析。
同时还应提供网站被访问的整体数据,包括:单位时间内首页、搜索页面的访问人数、单位时间内各频道页面的访问人数、访问者的来源分析、各大类商品销售数据排行榜等!
一 数据统计:
1 流量统计是基础的数据统计
网站的统计工具可以让我们了解基本流量信息,包括独立访问者、访问停留时间、页面停留时间、访问率等;实时了解网站的变化趋势,了解有效覆盖人群的规模,了解推广的目标人群,在哪个页面,哪个频道。
1.了解网站的目标人群特征,为产品设计提供重要依据
2.了解网站关注行业用户量的潜在规模
3.与行业平均指标做对比,作为评估自身网站发展的指标
4.分析网站与竞争对手之间的用户重合度
5.分析自身网站内部各栏目间的用户重合度
根据网站的大致需求,相关网站“数据统计”的基本分析应具有:
A. 访问人次,即网站的访问人次,通常以日访问人次统计,此指标不排除同一访客同一天访问多次。
B. 访问总页面数,即访问者在站点上浏览的总页面数,通常以日统计。
C. 独立访客,也称独立IP,指访问站点的独立访客,通常以日访问人次统计,每台独立上网电脑被视为一个独立访问者。同一电脑多人使用时,不重复计算,仍视作一个独立访问者。
D. 人均停留时间,即访问者在网站停留的时间
计算公式:人均停留时间=访问人次停留时间/访问人次。指“独立访问者”平均每次访问某一网站的停留时间。也就是说一个周期内,从开始访问这个网站到结束访问这个网站所停留的时间。
E. 人均访问页数(PV值),即访问者平均访问页面数,
计算公式:PV值=访问总页面数/访问人次。这项指标同样重要,访问者平均访问页数越多,越能实现网站的目的指向。
F. 跳出率,即访问者到达站点后浏览页数仅有的一页的比率。
G. 新访客,即访问站点的访问者是否第一次登录站点,该指标从一侧面反应平台的人气程度和知名度,通常以日为单位进行统计。每日新访客人数越多,说明人气越高,影响度也越来越高。
H. 回访者,即访问站点的访问者超过一次以上登录站点,该指标从一侧面反应访问者对站点的接受程度,通常以日为单位进行统计,回访人数越多,说明站点被接受的程度越高,而通常,网站的潜在客户行为,就是在回访者中实现,如注册、购物、消费等。
I. 每个独立访问者访问频次:一个周期内独立访问者的平均访问次数。
2 关键字数据收集
包括两方面:
客户通过哪些关键字到达网站
客户在网站搜索哪些关键字 --- 精确地跟踪有哪些关键字产生了销售额或销售机会
3 网站专题及营销方式的效果统计
精确地跟踪有哪些专题产生了销售额或销售机会,跟踪由专题转换为销售的点击次数
帮助我们评估网站页面格局的合理性
跟踪销售额和销售机会
二 根据以上数据统计带来哪些分析结果:
1 对网站营销的意义:
通过网站的数据分析可以进行相关的推广效果评估,指导网站的页面布局和推广方式。这就需要我们明白网站的第一目标用户是谁,他们有什么特点。
当网站决定提供一项服务时,要清楚如何比别人做得更好。
第一步:分析品牌——看购物信息的网民经常在网上关注什么品牌
第二步:类别分析——他们经常访问哪些网站(除了购物类网站之外)
第三步:频道分析——他们一般关注这些网站的什么频道
第四步:定位产品方向——根据用户特点,设计网站页面内容,制定推广策略
2 对网站建设的意义:
通过统计的数据对网站布局合理性及吸引力、频道间相关性等情况进行评估
分析网站内容对访问用户的吸引力
分析网站内/外流量导入/导出的情况,了解合作网站,评估广告投放的真实效果
分析各个频道间流量的相互贡献程度
分析网站用户的访问路径,了解网站建设中的潜在问题
根据搜索的关键词分析,可帮助网站进行内容优化及页面布局
了解频道间相关性,帮助改善网站内容。
了解外部导入网站带来的合作价值
分析市场活动的行为指向,了解市场运作及合作方带来的流量价值
3 对提高客户满意度、忠诚度和网站粘性的意义
同时,可以通过数据分析,了解访问者最常进入以及最终流失的路径,找到如何留住忠实访问者及避免用户流失的方法。
大部分访问者从哪里来—分析网站流量来源
访问者最关注哪些栏目—分析访问者的浏览路径
访问者从哪里流失得最多—分析网站流量流失的原因
分析访问来源的差异性—分析不同访问渠道对流量的贡献程度
如果发现网站的流量流失很严重,访问量与有效注册量的比例失衡
需要:用数据分析查出用户流失的原因
1.统计访问者流失最高的栏目
2.分析该栏目访问路径中各个环节的流失率
3.分析该栏目页的主要问题并予以解决,提升用户操作满意度
数据分析不仅可以在网络广告前期发挥巨大作用,在投放后期同样是调整广告方向的重要工具。比如,通过数据可以看到用户从哪里来、如何组织产品页面可以实现很好的转化率、投放广告的效率如何等等问题。基于数据分析的每一点点改变,都可以使赚钱的能力提高一点点。所以,只有称数据分析为网络营销的灵魂才能凸显数据分析的重要性。现在,是重视数据分析的时候了。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02