
小白学数据分析--留存率的三个普适原则
关于留存率的文章,现在很多,以下要说的内容实际上算是对于留存率使用的一个小归纳。这篇文章所要阐述的内容其实早在去年就已经形成了,一直没有足够的时间组织起来,因为我觉得虽然简单,不过影响的范畴和可扩展的领域很多。值得去思考和借鉴。
留存率存在三个原则
留存率原则之一
不同用户群之间的留存率趋势是一致的
针对这点,其实可扩展的内容很多,比如不同渠道之间的用户留存趋势是一致的,不过不同渠道之间的留存率水平是不一致的,这一点在前一篇文章中已经有涉及过,这里不详细讲述。不同用户群,渠道的留存差异可以作为衡量玩家使用粘度的一个量化。
而说到这点,我再多说一下,往往我们的游戏会有推广时期和自然增长时期,我们可以对比推广时期和自然增长两个时间的用户群的留存率表现,这点其实作用很大,如果我们只是使用一个次日、三日、7日,其实很多时候会规避问题,因此,也建议在做留存率分析,多多进行不同时期的留存率对比,而这点可行的基础就是留存曲线整体上的趋势是一致的。
留存率原则之二
不同产品之间的留存率趋势是一致的。
这一点对于开发者而言,也是具有很大意义的,因为每个公司不止研发一款产品,在系列产品中,用户的留存表现可以帮助开发者理解自己的产品质量,此外我们可以把同一款产品的两次更新当做是两款产品来看待,这样也帮助我们比较前后版本的粘性和质量情况。
再者,留存曲线本身就存在流失期、蒸馏期、稳定期,通过横向,纵向的对比,帮助开发者尽快找到玩家的生命周期长度。同时,这条曲线其实对于渠道而言,也存在很大的意义,因为同一个位置,什么游戏的质量更好一些,我们就可以通过对比多款产品的留存曲线表现,来进行决定,当然这只是渠道在量化最佳位置收益最大化的一个数据分析点,不止于此。
留存率原则之三
不同日期之间的留存率趋势是一致的
这点我想是大家最不陌生的,也是我们常用的,如果我们只是每日孤立看待留存率,效果并不是很明显。
对于不同日期的留存率衡量不是只限于两日,也可以是自定义时间点,自定义用户属性(比如时间段内,启动至少3次,这部分在后续文章会说),总的来说,就是要说明,不同时期的用户留存的变化情况,这有利于我们把握不同时间点的推广和投放情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12