
小白学数据分析--渠道、运营、数据_I
上周六做了一个演讲,关于渠道、数据、运营的内容,今天开始,针对演讲的一些内容,有针对性的阐述一下。不过既然我是一个数据分析师,自然还是从数据分析角度来看待这个问题,在后期的文章中,我会加入一些案例,帮助理解。
渠道是最有效的获取潜在用户的方式
渠道存在海量的用户资源,并服务于开发者。渠道本身聚合了大量的用户,进而形成平台,成为了平台,就必然存在“货架”,而这些货架的位置是有限的资源,但是开发者对于资源争夺和需求确实强烈,这点使得渠道货架的位置变得无比重要,再者,开发者也一直认为获得了最佳的位置,就会带来不错的收益,基于此点认识,导致了渠道投放成本的增加,而渠道在寻找最佳适合渠道的产品征途上变得异常艰难。其实,开发者没有找到适合自己的最佳渠道,渠道没有寻找到最适合自己用户资源的最佳产品。
最佳渠道是让产品利益最大化的方式
最佳渠道可以精准定位用户,并建立忠诚关系。说到这里,其实有两层含义,第一点,作为渠道而言,希望自己飞用户资源是最契合产品需求的,进而对于自己用户资源的把握和PUSH,决定开发者认定这个渠道是否对他是有价值的,第二,本身渠道的用户与渠道之间是否存在稳定的关系,是否对于渠道存在一定忠诚度。如果本身渠道用户在渠道中没有忠诚度,比如长期回访用户很少,谈不上忠诚度,进而即使用户从渠道了解产品,那么留存率也会受到影响。
品牌的力量
作为一个渠道也好,作为产品也罢,其实是需要品牌的。现在看到很多产品都在挣快钱,先过冬再说,这点不能说是错的,但是绝对也不是对的。
渠道需要品牌建设
针对这点来说,最简单的一句话,渠道需要回头客。一般而言,作为玩家或者普通用户,对于每一个渠道都会产生一个固定的认识,这个固定认识的其实就是品牌的影响,如果你的渠道总是提供的一些带有捆绑软件的渠道,那自然用户对于你的认识是不好的。这点就有点像那句话,今年过节不收礼,收礼只收脑白金。当用户一旦形成了对于某一个渠道的认识后,要想去改变是很困难的。
说到这里,可以多说一句,如果你的渠道其他特性没有,但是就是下载速度比别人快一倍,那么当用户体验过后,他对于你的品牌建设和认知的第一步就已经形成了,那就是这个渠道下载速度快,软件包是最新的,干净的。
渠道的品牌建设也许不需要面面俱到,但是可能一点就够。因为用户对于品牌的忠诚不需要太多理由。那么,相应的你会去挖掘自己的渠道具有以下的特点:
产品需要品牌
针对这点,我不想说的很多,在手游这个圈子,至少我们已经看到一些产品是具有这个品牌影响力的,如今交叉换量这种形式的出现,我想一方面是得益于交叉用户,大用户资源,但在背后的,其实还是形成的口碑,品牌在影响最终用户的行为。
要建立数据监控体系?
其实,说到数据分析监控体系,这是两个方面的工作,一方面从渠道而言,除了固有的网站分析那些之外,还要结合自己的商业逻辑设计一套数据分析指标体系,今天再次对这点不展开讨论,其实更多时候,针对这些开发者和产品,他们更需要因地制宜的数据分析模型,来优化渠道投放和策略。
无法衡量,就无法改进
这句话是说给渠道和开发者听的。现在很多时候我们会发现,市场人员往往制定的营销策略是滞后的,不能实施应对市场的变化,其实原因就是在没有监控实施变化,进而进行优化调整,这就导致了成本的不断增加。再者,推广营销人员,对于产品的把控周期太短,如果只是把KPI定在了下载激活,自然用户后续的质量,行为,就和这些人员没有关系了,自然也就不会关注产品本身的一些质量,优化问题,是否你的推广策略适合该渠道的投放。而这就是第二点,我们太多时候忽略了用户下载后的行为,对于渠道而言,当用户下载后,是否再次返回渠道,进行相关关注,是否更新等等,对于产品人员来说,是否推广用户的质量达到要求(次日、三日、七日留存率,新手通过率等等)
数据驱动下的最佳渠道优化策略
目标定位
什么能做,什么不能做
两方面,第一方面,了解自己的用户到底是什么特点,是否和最初产品设计需求背离;第二点,基于产品的渠道特点是什么,渠道本身特点是什么?为此,需要建立针对目标定位的数据分析内容。
了解渠道与定位产品
获取数据
哪些先去做,那些后做
这点其实更多的把重心放在渠道推广的效应层面上,从宏观了解渠道推广的影响,对比自然增长阶段水平,或者对比往期推广效果。这点和目标定位是存在紧密关系的。
渠道监测
如果说获取数据是从比较粗的粒度上看待问题的话,那么渠道监测僵尸全面了解渠道的表现情况,这里将不仅仅是下载激活,还有留存率,还有付费收益等等环节,推广运营解决不是下载激活,而是带来自然的活跃和收益,并不断增长的良性循环。因为我们了解一下的事实:
同时,好的渠道推广运营也必然了解这条曲线:
关于策略优化和深度推广,将在以后的内容继续阐述。
在此先上图,关于渠道优化的点有如下:
有关于渠道深度推广部分,这里主要会将一个闭环介绍给各位,内容稍多下次再议
我这里有一些如何通过数据优化渠道推广的策略,谨在此向各位展示一下,针对这些的案例分析和描述会在后续的文章中出现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12