
如何通过招聘数据分析,提升招聘营销效果
不要说“HR大数据”忽悠人,错过或无视数据本身就是一种罪恶。
所以,数据分析并不一定要等到年度总结时才做。每个项目或阶段都可以为我们提供分析数据的机会,而通过分析数据,我们又能为下一段工作提供指引。不要说“HR大数据”忽悠人,错过或无视数据本身就是一种罪恶。接下来,我将如何通过招聘数据分析,提升招聘营销效果,谈谈我的看法。
先搞清楚你到底要收集哪些数据进行数据分析的第一步,就是要搞清楚你到底要收集哪些数据,以及你计划如何使用它们。你做数据分析的目的是期望让你的招聘团队看到他努力的结果,以及让他们录入这些数据的价值所在。比方说,你知道前雇员们的姓名和地址,有助你了解到你的员工都是来自什么行业、地区。让数据成为招聘官的朋友收集数据是一件很痛苦的事情,尤其这些数据不在日常工作项内——这意味着要给招聘官们增加额外的工作。所以,你需要和你的招聘官们开个会,解释一下你需要录入的数据的重要性,解释一下这些数据将如何让他们的工作变得更方便。假如通过数据分析,他们能提升获取简历的质量,减少他们筛选简历和面试候选人所需要花费的时间,他们会很乐意支持你的工作。收集半年以上的数据来进行分析我们常说“金三银四”、“金九银十”,招聘总是有高峰和低谷的时候。进行统计分析,你需要充分考虑到招聘的季节性,确保你至少有半年到一年的招聘数据点。
基于这些数据分析出来的结果才更有参考价值。我们可以从以下四个方面来进行数据分析。通过这些数据分析,将有效提升你招聘营销的效果,让你的招聘事半功倍。了解并定义从申请到雇佣的比率着眼于招聘,你首先需要分析的指标,就是从申请到聘用的比率。这个数据将告诉你,聘用一名新员工,到底需要多少申请者。当然,在招聘分析中,我们还可能会分析到简历筛选的通过率、面试到场率、初试通过率、复试通过率等等。做这一项的分析,我们首先计算出一个整体的平均值,然后再探究不同岗位的从申请到聘用的比率,看看它是高于平均值,还是低于平均值,以便你能更有效地管理你的招聘活动。如果是高于平均值,看看你的投放情况,了解一下哪些活动来带了简历,但是简历的品质却很差。在这一基础上,你可以和招聘官谈谈这些岗位的工作描述,增加一些额外的工作条件和细节,以便让申请者更明确岗位的需求。
如果低于平均值,需要看看这些岗位是否需要较高的技能水平及特定的教育层次,再看看招聘周期是否超过平均值。如果这个岗位只有很少的人申请,需要很长时间才招到人,这意味着你需要关注投放渠道的有效性,以及考虑通过内容创造候选人考虑你公司岗位的关键利益点。对候选人进行地理定位如果公司总部在长沙,来深圳招人,成功率会有多大?或者说,公司总部在深圳南山区,但候选人居住在罗湖区,成功率会有多大?对候选人进行地理定位,了解一下前来面试的候选人距离你的公司到底有多远:哪一区域内的候选人会更多?候选人所处地理位置的临界点在哪里?……将有助于你在目标候选人生活的高频区域有效地安排你的招聘活动,避免做无用功。
了解员工加盟之前所从事的行业收集新员工加盟公司之前所从事的行业,可以为你的招聘提供有价值的参考,甚至可能重塑你的招聘行为。以招聘销售人员为例,以前从事过哪一个行业的销售人员更容易得到认可,更容易创造良好的业绩,将让你未来的招聘行为更具备针对性。对参与面试后的候选人进行调研在这个阶段,候选人对你的积极响应,将为你的招聘工作带来极大的帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12