京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何通过招聘数据分析,提升招聘营销效果
不要说“HR大数据”忽悠人,错过或无视数据本身就是一种罪恶。
所以,数据分析并不一定要等到年度总结时才做。每个项目或阶段都可以为我们提供分析数据的机会,而通过分析数据,我们又能为下一段工作提供指引。不要说“HR大数据”忽悠人,错过或无视数据本身就是一种罪恶。接下来,我将如何通过招聘数据分析,提升招聘营销效果,谈谈我的看法。
先搞清楚你到底要收集哪些数据进行数据分析的第一步,就是要搞清楚你到底要收集哪些数据,以及你计划如何使用它们。你做数据分析的目的是期望让你的招聘团队看到他努力的结果,以及让他们录入这些数据的价值所在。比方说,你知道前雇员们的姓名和地址,有助你了解到你的员工都是来自什么行业、地区。让数据成为招聘官的朋友收集数据是一件很痛苦的事情,尤其这些数据不在日常工作项内——这意味着要给招聘官们增加额外的工作。所以,你需要和你的招聘官们开个会,解释一下你需要录入的数据的重要性,解释一下这些数据将如何让他们的工作变得更方便。假如通过数据分析,他们能提升获取简历的质量,减少他们筛选简历和面试候选人所需要花费的时间,他们会很乐意支持你的工作。收集半年以上的数据来进行分析我们常说“金三银四”、“金九银十”,招聘总是有高峰和低谷的时候。进行统计分析,你需要充分考虑到招聘的季节性,确保你至少有半年到一年的招聘数据点。

基于这些数据分析出来的结果才更有参考价值。我们可以从以下四个方面来进行数据分析。通过这些数据分析,将有效提升你招聘营销的效果,让你的招聘事半功倍。了解并定义从申请到雇佣的比率着眼于招聘,你首先需要分析的指标,就是从申请到聘用的比率。这个数据将告诉你,聘用一名新员工,到底需要多少申请者。当然,在招聘分析中,我们还可能会分析到简历筛选的通过率、面试到场率、初试通过率、复试通过率等等。做这一项的分析,我们首先计算出一个整体的平均值,然后再探究不同岗位的从申请到聘用的比率,看看它是高于平均值,还是低于平均值,以便你能更有效地管理你的招聘活动。如果是高于平均值,看看你的投放情况,了解一下哪些活动来带了简历,但是简历的品质却很差。在这一基础上,你可以和招聘官谈谈这些岗位的工作描述,增加一些额外的工作条件和细节,以便让申请者更明确岗位的需求。
如果低于平均值,需要看看这些岗位是否需要较高的技能水平及特定的教育层次,再看看招聘周期是否超过平均值。如果这个岗位只有很少的人申请,需要很长时间才招到人,这意味着你需要关注投放渠道的有效性,以及考虑通过内容创造候选人考虑你公司岗位的关键利益点。对候选人进行地理定位如果公司总部在长沙,来深圳招人,成功率会有多大?或者说,公司总部在深圳南山区,但候选人居住在罗湖区,成功率会有多大?对候选人进行地理定位,了解一下前来面试的候选人距离你的公司到底有多远:哪一区域内的候选人会更多?候选人所处地理位置的临界点在哪里?……将有助于你在目标候选人生活的高频区域有效地安排你的招聘活动,避免做无用功。
了解员工加盟之前所从事的行业收集新员工加盟公司之前所从事的行业,可以为你的招聘提供有价值的参考,甚至可能重塑你的招聘行为。以招聘销售人员为例,以前从事过哪一个行业的销售人员更容易得到认可,更容易创造良好的业绩,将让你未来的招聘行为更具备针对性。对参与面试后的候选人进行调研在这个阶段,候选人对你的积极响应,将为你的招聘工作带来极大的帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01