
大数据“大”在哪里
“大数据”涵盖了人们在大规模数据的基础上可以做的事情,大数据让我们以一种前所未有的方式通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见,最终形成变革之力。
作为2015年和2016年的重点话题,大数据在成为资本市场风口的同时,也上升到了国家战略层面。国务院在《推进普惠金融发展规划(2016~2020年)》中直接提到,“鼓励金融机构运用大数据、云计算等新兴信息技术,打造互联网金融服务平台”。于是,国内外各金融与类金融机构纷纷上马大数据应用,希望可以借此带来技术上的突破、提升获客能力、升级风控体系、探索新型态基于场景化的消费金融市场,一夜之间,大数据仿佛成了突破现有发展瓶颈的万能灵药。
对金融行业来讲,大数据“大”在哪?要理解这个问题,需要和传统数据做个比较。只有从本质上区分它们的不同,才能更好地理解和更有针对性地应用这一宝贵的新资源。
传统金融机构,在建设信用风险打分模型的数据来源主要有几个方面:第一,人民银行征信中心数据;第二,客户自己提交的外部个人财力证明数据,如房产证、汽车行驶证、单位开具的收入证明等;第三,金融机构或集团内部积累的客户历史数据,如银行的工资流水,历史贷款数据,保险数据等。传统数据优点是这些数据和金融的价值相关性高、数据采集规范。金融机构基于这些高价值数据,纷纷设计出各种信用风险评分模型,最终实现对客户信用风险的打分评估,是目前较为成熟的运行方式。
但这样获取的信息,其缺点也是显而易见的,主要表现在维度较小,覆盖的人群有限,对于新形态的互联网模式适应程度较差,也不容易达到普惠覆盖的目的。
在互联网时代,客户信息的获取渠道更加多元化,主要包括内部收集和外部渠道,内部收集指各互联网生态体系内,长期积累的用户数据。外部渠道则是指各种数据源采集,如通信数据、社保数据、法院失信数据、交通数据、保险数据等等。
大数据的诞生正好契合了互联时代的要求。大数据的“大”,首先体现在数据体量上,首先是指大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据;第三是数据处理速度快,在数据量非常庞大的情况下,也能够做到数据的实时处理。
基于以上几点,大数据特征反映在如下方面,第一,数据覆盖面广。各大互联网集团,通过各种APP采集积累了用户行为各方面的数据,如搜素历史数据、电商交易数据、支付交易数据、社交数据,以及各种APP采集的用户行为数据等等。第二,大量非结构化的破碎数据导致的数据不很准确。数据采集渠道的多元化和非标准化,随之带来的问题就是,客户信息不很准确,同一客户不同维度的信息经常不完整或匹配不上。第三,数据来源不稳定。不少大数据采集通过灰色渠道收集个人隐私数据,数据连续性和可持续性欠佳,往往有数据过时或缺失问题。第四,消费数据和信用数据关联性弱。
由此可见,大数据所谓的“大”,并非如传说中的那样能包治百病。随着传统数据源局限的被打破,社交数据、企业内容、交易与应用数据等新数据源的兴起,企业愈发需要有效的信息分析处理能力来确保其真实性及安全性。如同原油需要经过层层的提炼,才能成为人类可以大量应用的石油产品,大数据也需要经过精心的筛选和应用设计,才能起到实质的功效。
尽管市场上常见的大数据机构收集了各种维度的客户行为信息,试图描绘客户画像,但消费类的数据和客户信用风险以及还款意愿并不直接相关。目前的大数据公司往往缺少内部征信数据、外部征信数据、个人资产数据等强金融变量数据,而集中在客户衣食住行和社交信息,要直接拿来作为信用风险评分模型的有效性依旧有待考验。考虑到大数据和传统金融数据的差异性和互补性,所以更多的应该是如何通过模型的设计和提炼,使得这些大数据源经过提炼,可以从原油变成成品石油般广为应用。
“大数据”的概念其实是涵盖了人们在大规模数据的基础上可以做的事情,而这些事情在小规模数据的基础上是无法实现的。换句话说,大数据让我们以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见,最终形成变革之力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12