
小白学数据分析--付费用户的金子塔模型实践操作
免费游戏中付费用户模型分析
最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下。
感悟和理论
得到的灵感首先要感谢Nicholas Lovell 的这篇文章,是我得到了一些处理和分析这个模型的办法。
Lovell是从理论的解析了这个付费用户的模型,篇幅很短但是内容很好。早先我们有一个观点就是付费渗透率的提升,意味着收入在随后的一段时间内会逐渐打开和扭转,因为一旦用户开始付费(且这个群体不断膨胀),那么我们的收入就会有起色,这些人会从最开始的一元两元开始发展到几十几百的规模。
事实上呢,这种情况存在,但是更多时候这个看似正确的命题却鲜有证明过。那么我们可以认为收入的增长其实不是靠量的积累,也就是说不是靠你拉来多少用户,有多少用户转化了付费,而是依靠那些少量却能创造大收入的用户。这点在免费游戏中是如此。
现在大多数的游戏是免费游戏,免费游戏去掉了体验游戏的障碍,这就最大程度上意味着解放了用户的消费能力,去除了消费的上限。
由免费游戏的用户构建的虚拟社会本身就是不平等的,因为消费的差异化打开了,因此我们也通过道具得形式不断的解放和发展用户的消费潜能,比如消耗品、升级、美化、社交、金钱换时间的方式。在Lovell的文章中提出了一个模式化免费增值能量定律:
将玩家分成三大类:
* 每月投入极少资金的小鱼,通常是1美元。
* 花费“中等”数额的海豚。他们平均每月花费5美元。
* 投入大量资金的鲸鱼。他们平均每月花费20美元。
* 免费体验者属于第四类。
三类用户的分布比例如下:
* 小鱼:50%的付费用户
* 海豚:40%的付费用户
* 鲸鱼:10%的付费用户
注意这是能量定律模型的近似估值。你可以调整分布比例和ARPPU数值。但调整分布比例和ARPPU数值会改变预期的曲线。
这里Lovell谈到的付费用户的划分标准时5:4:1,对于这一点我觉得这就确立了我们在对待ARPPU的问题上也要阶梯式的看法,相比笼统的确立ARPPU,空喊提升或者降低,这种确立方式是有效的,也是更加精准的。
实践和结果
按照Lovell的分析和结论,我进行了分析,首先我们拿到用户的充值记录,我们将充值记录进行处理,由原本的交易格式变成基本的表格数据。利用数据透视表得到每个账户的充值金额和充值次数。
在充值金额的曲线上,我们看到基本上是符合幂律分布的。
而对应的充值次数进行分析,也是与充值金额的趋势基本一致,符合幂律分布形式,而我们的接下来的付费用户的分类模型采用什么样的数据进行分类将变得非常重要。
如刚才我所提到的,我们把用户的充值数据变化形式,由交易数据变成表格数据,这一步是最关键,即表格数据我们就可以知道每个付费用户目前充值总额和充值次数。下面我们就利用这种数据进行具体的分析处理。
首先,我们确立几个统计指标,平均数,众数,中位数。
平均数:即ARPPU,也就是充值总额/总充值用户数;
众数:一组数据出现频率最高的值,在Excel中的函数是mode();
中位数:一组数据中从小到大排列,处于中间位置的数,在Excel中的函数是Median()。
我们完成以上三个数据指标的计算,数据如下:
如果你愿意,也可以计算一下在交易数据格式下的众数。
接下来,就是比较关键的过程了,这里我使用SPSS进行描述统计,做频数分析,这个过程也可以在Excel的数据分析过程中完成。
把刚才处理好的数据导入到SPSS中,一共三个变量,如下图:
账户ID、充值额、充值次数
随后,我们打开频率分析面板
统计量位置,按照自己的需求进行选取就可以了,如下图所示:
点击继续,等待结果输出,输出后,在左侧会有相应的提示,参照提示查看就可以了,此处我们重点看频率表
如下图,则是输出的频率表
此图中,我们看到50%的用户充值在50元,按照之前的结论,我们把这部分群体划分为小额用户,即小鱼用户。
然而,根据平均数计算的ARPPU的289元,达到该级别的用户不到20%,换句话,ARPPU不能一味笼统的判断目前游戏用户的充值能力和付费情况。
接下来,如果我们按照lovell的划分40%为海豚用户,那么海豚用户应该是达到90%了,如下图:
海豚用户的充值最高达到了571元,最低60元。
随后我们把接下来的10%划分为鲸鱼用户,他们的最高充值达到了千元以上。
以上我们是按照lovell的划分方式进行,接下来我们要进行第三步分析了。
首先小鱼用户占据50%的用户总量,经过数据处理我们得到
ARPPU:35
收入占比:6%
其次海豚用户占比40%的用户总量,经过数据处理我们得到
ARPPU:192
收入占比:27%
第三鲸鱼用户占比10%的用户总量,经过数据处理我们得到
ARPPU:1927
收入占比:67%
经过以上的分析和整理,基本上验证了lovell所说的5:4:1
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11