
小白学数据分析--数据指标 累计用户数的使用
小白学数据分析--à数据指标累计用户数的使用
累计用户数是指注册用户数的累计,即可以认为是新用户的累计。在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如:
那么这个指标究竟有什么用?以前作为我自己也没有想到什么比较好用的方式去分析这个数据,既然存在了这个指标,就有存在的价值。此处,我所提到的分析思路和方法也是基于电商的一些分析方法,且对于累计用户数的分析,还具有延展性,能够完成一些更深入的分析,今天就简单的来说说这个指标的分析。
可以想象的是,如果根据累计用户数来做一条曲线的话,这个曲线应该是呈现逐渐增长的形式,且不断增长,然而受到版本更新,新市场开拓,季节影响因素,该曲线是会发生变化的。如下图所示:
从上图可以看到,我们可以把改图分成几个时期,比如在第一个拐点我们可以定义为导入期,该阶段是用户量的引入时期,比如我们有时候游戏进行小范围的测试,之后进入到了快速的增长期,历经过了增长期,我们发现其斜率发生了变化,符合线性回归,当然这不是唯一的形式,根据不同的游戏在其增长期之后的累计用户变化还要根据实际情况确立。
然而我们这里只能是总体上衡量我们目前游戏用户的总量,以及预测后期的用户量的走势,包括活跃情况,以及收入情况的预测。
但是我们有一个疑问,单单看这个图能分析出什么呀?只是确定不同的时期而已?
其实这个图的分析我们还要确立一条曲线,这条曲线就是老用户比例曲线,通过结合老用户比例曲线和用户总量的曲线结合分析,就能够得到更好的分析结果。这种组合的方式分析的结论一般有几种结论。
1)负增长型
浅色的曲线代表的是老用户的比例,通过老用户比例的变化并结合累计用户的变化,我们基本上能够看到游戏目前的用户量的变化和走势,如上图所示,经历过了增长期后,在随后稳定的累计用户阶段,我们能够看到老用户的比例实际上是开始走下坡路了,即随着累计用户的不断,其活跃用户的比例其实是向下走。这点,我们可以通过累计用户数和老用户百分比进行相关性分析,是呈负相关的。这种负增长的形式,便于我们及早发现一些游戏的问题,从宏观上把控游戏质量。这种负相关,我们可以再看看日活跃的曲线来分析。此处明显看到,日活跃是在增长以后,又开始了下降,根据这种下降我们可以预测收入和人气数据。
2)保质型增长
所谓保质型增长其实就是用户量不断增长,但是老用户的比例却没有出现下滑的类型,其隐藏的含义,就是我们的活跃用户是处于增长时期的,保质型增长可以帮助我们在一段时间内能够预测游戏收入情况、用户的增长情况。此处我们再列出来日活跃用户的曲线:
3)断层型增长
所谓断层性增长是老用户比例先高后低再增长的形式,这种情况比如我们新渠道的开拓,大型版本的更新[影响范围和跨度较大],但是多数时候是受制于新的渠道和市场的开拓,此时也要结合累计用户比例的变化情况来分析,也许有人此时会问,那么直接使用新登和活跃用户的变化不是更直接吗?此处加上累计用户的目的就在于从另外一个角度说明游戏的目前变化状态情况[总量与现有老用户的关系]
然而这种变化情况下,如果我们要进行一些预测分析,其难度其实很到,因为很难去把控在下一个阶段的数据走势和变化,之所以我们这里做的这种分析,目的就是为了服务于预测分析。
4)稳健性增长
所谓稳健性的增长,就是老用户增长是随着累计用户数的增长同步的关系,说白了是一种正相关,即总量涨,老用户也在涨。
而实际的活跃用户曲线也确实如此:
总结
说了这么多的废话,为什么还绕个弯子做这些分析呢?
原因其实很简单,老板需要下一个阶段的游戏收入、人气情况,然而对于游戏去做预测这个事本身来说就存在很大的误差,因为受到的影响因素实在很多,因此下一个阶段的预测分析出了要考虑这些因素的同时还要考虑其他的因素,而这些因素就是你的游戏目前处于哪个时期,是稳健的增长,还是保质型增长,还是负增长,或者断层性增长。作为对于未来一段时间的分析,我们必须要参考现阶段的用户变化情况,这是一个参考依据。
如果我们只是列出来一条目前的活跃用户和新登用户的变化曲线,我们不能很好的判断游戏处于的时期和其他信息,比如用户总量的情况与老用户的留存比例等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13