京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小白学数据分析--数据指标 累计用户数的使用
小白学数据分析--à数据指标累计用户数的使用
累计用户数是指注册用户数的累计,即可以认为是新用户的累计。在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如:

那么这个指标究竟有什么用?以前作为我自己也没有想到什么比较好用的方式去分析这个数据,既然存在了这个指标,就有存在的价值。此处,我所提到的分析思路和方法也是基于电商的一些分析方法,且对于累计用户数的分析,还具有延展性,能够完成一些更深入的分析,今天就简单的来说说这个指标的分析。
可以想象的是,如果根据累计用户数来做一条曲线的话,这个曲线应该是呈现逐渐增长的形式,且不断增长,然而受到版本更新,新市场开拓,季节影响因素,该曲线是会发生变化的。如下图所示:

从上图可以看到,我们可以把改图分成几个时期,比如在第一个拐点我们可以定义为导入期,该阶段是用户量的引入时期,比如我们有时候游戏进行小范围的测试,之后进入到了快速的增长期,历经过了增长期,我们发现其斜率发生了变化,符合线性回归,当然这不是唯一的形式,根据不同的游戏在其增长期之后的累计用户变化还要根据实际情况确立。
然而我们这里只能是总体上衡量我们目前游戏用户的总量,以及预测后期的用户量的走势,包括活跃情况,以及收入情况的预测。
但是我们有一个疑问,单单看这个图能分析出什么呀?只是确定不同的时期而已?
其实这个图的分析我们还要确立一条曲线,这条曲线就是老用户比例曲线,通过结合老用户比例曲线和用户总量的曲线结合分析,就能够得到更好的分析结果。这种组合的方式分析的结论一般有几种结论。
1)负增长型

浅色的曲线代表的是老用户的比例,通过老用户比例的变化并结合累计用户的变化,我们基本上能够看到游戏目前的用户量的变化和走势,如上图所示,经历过了增长期后,在随后稳定的累计用户阶段,我们能够看到老用户的比例实际上是开始走下坡路了,即随着累计用户的不断,其活跃用户的比例其实是向下走。这点,我们可以通过累计用户数和老用户百分比进行相关性分析,是呈负相关的。这种负增长的形式,便于我们及早发现一些游戏的问题,从宏观上把控游戏质量。这种负相关,我们可以再看看日活跃的曲线来分析。此处明显看到,日活跃是在增长以后,又开始了下降,根据这种下降我们可以预测收入和人气数据。

2)保质型增长

所谓保质型增长其实就是用户量不断增长,但是老用户的比例却没有出现下滑的类型,其隐藏的含义,就是我们的活跃用户是处于增长时期的,保质型增长可以帮助我们在一段时间内能够预测游戏收入情况、用户的增长情况。此处我们再列出来日活跃用户的曲线:

3)断层型增长
所谓断层性增长是老用户比例先高后低再增长的形式,这种情况比如我们新渠道的开拓,大型版本的更新[影响范围和跨度较大],但是多数时候是受制于新的渠道和市场的开拓,此时也要结合累计用户比例的变化情况来分析,也许有人此时会问,那么直接使用新登和活跃用户的变化不是更直接吗?此处加上累计用户的目的就在于从另外一个角度说明游戏的目前变化状态情况[总量与现有老用户的关系]

然而这种变化情况下,如果我们要进行一些预测分析,其难度其实很到,因为很难去把控在下一个阶段的数据走势和变化,之所以我们这里做的这种分析,目的就是为了服务于预测分析。
4)稳健性增长
所谓稳健性的增长,就是老用户增长是随着累计用户数的增长同步的关系,说白了是一种正相关,即总量涨,老用户也在涨。

而实际的活跃用户曲线也确实如此:

总结
说了这么多的废话,为什么还绕个弯子做这些分析呢?
原因其实很简单,老板需要下一个阶段的游戏收入、人气情况,然而对于游戏去做预测这个事本身来说就存在很大的误差,因为受到的影响因素实在很多,因此下一个阶段的预测分析出了要考虑这些因素的同时还要考虑其他的因素,而这些因素就是你的游戏目前处于哪个时期,是稳健的增长,还是保质型增长,还是负增长,或者断层性增长。作为对于未来一段时间的分析,我们必须要参考现阶段的用户变化情况,这是一个参考依据。
如果我们只是列出来一条目前的活跃用户和新登用户的变化曲线,我们不能很好的判断游戏处于的时期和其他信息,比如用户总量的情况与老用户的留存比例等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27