
大数据时代的学习与评价:学习证据源自何处
大数据技术已逐步进入学校教育当中。数据量的大小不是我们判断其是否为“大数据”的唯一依据,我们还应从数据收集源头、数据节点规模、测量对象、机器作用及数据分析者职责等角度对其进行综合认识。
数据收集源头
得 益于信息技术的迅猛发展,人们可以将学习证据的收集嵌入到整个学习过程中。这些嵌入式数据节点可能很小,或是为学习者提供的反馈;或是个性化学习环境中为 个别学生下一步学习做出的决策;它们或聚合到更高层次,为学习者特征分析提供依据;或在学校、班级、小组、个体层面生成数据,为教育管理中的问责服务。
坐 拥更全面的数据源,人们有可能超越传统的测试手段。嵌入式评估将模糊形成性评价与总结性评价的界限。当学习过程嵌入了数据收集功能时,人们可以追踪学习者 的学习活动、记录学习过程、分析学习成果的成因和品质。学习分析与数据挖掘可以归纳出学习进展的总结性信息;它同时又能全方位地深入到具体项目以及学习者 所产生的任何一个数据节点中,浏览过程性信息。在此背景下,“反思性教学法”将取代传统的“教学—评价”二元教学法。传统的形成性评价与总结性评价是不同 目的、不同形式的数据收集方式;未来,我们可能需要“前瞻式学习分析”与“回顾式学习分析”,它们所处理的不是不同批次的数据,而是针对同一批数据从前瞻 或回顾的角度进行分析和利用。
数据节点的规模
与 大教育中大数据的“大”一样重要的是,其数据节点的“小”。事实上,这是数据变得更“大”的唯一原因。“小”节点可能表现为学习者回答的一个问题、在模拟 情境中的一个动作,或在论坛当中的一次评论。更“小”的形式,还可能是一次按键、一个时间戳、导航路径中的一次点击、维基百科或博客中的某次编辑历史。学 习本身并没有变得更“大”,只是我们可以附着记录的学习事件变得更“小”了,它们的总和也因此前所未有地变大,以至于如果没有计算机综合技术的支持,人类 是难以处理和驾驭它们的。
测量的对象
经 典测试大多沿袭以下路线:学习中的认知发展——测试中的观察——将测试结果作为认知的证据进行解释。传统的测试对象单独位于学习过程之后,并支持回顾式解 释。然而,在以机器为中介的学习中,人们对学习证据的关注点已经转移到真实的知识人工制品上,并倾向于记录学习者利用学科知识所进行的实践,因为知识表征 可能存在于学科知识实践的人工制品及其建构过程之中。换句话说,我们分析的重点不在于学习者所能思考的内容,而在于他们所做的知识表征。
这 些人工制品含纳了许多复杂认知的表现,具体如科学实验报告、人类或社会现象报告、历史学论文、带有注释的艺术品、视频故事、商业案例研究、发明或设计的物 品、数学或统计案例、田野研究报告或根据用户故事编写的可执行的计算机代码等。这些人工制品是可识别的、可评估的、可衡量的。它的源起是可被验证的,其构 建过程中的任何一个步骤都是可被追溯的。围绕知识加工展开的数据收集范围也被极大地拓展:自然语言处理、任务所花时间、同行或自我回顾、同行评议、编辑历 史和导航路径等。
机器的作用
大 数据并不完全依赖由机器生成,尽管机器可以通过人格化的用户界面表现出非凡的智力。计算机仅是一种人类沟通的技巧、对原有文本结构的扩展。它是人类认知的 补充体、社会思想的延伸、文明传承史中的一部分。在大数据时代,通过收集和计算大量前人的判断,人类的智慧得以放大。数以百万计的、微小的人类事件被记录 在可以聚合的数据节点之中,为教师、教育项目设计师或研究人员提供重要证据。机器看起来十分聪慧,但它们聪慧的意义仅限于它们所收集并计算的众多人类智 慧,就像书籍、图书馆和教师过去所做的那样,只不过它们比真人教师和学习者所能处理的数据量更大罢了。计算机的智慧是有限的,它们只不过是记录和外化人类 思想的机器而已。
数据分析师职责
现 如今,人人都是数据分析师。在软件工程师和用户界面设计师创造的环境中,用户没有必要掌握其中的模糊统计公式,因为突出的学习信息将以可视化的方式呈现, 用户可以利用它们深入追溯具体的学习序列。教师通过访问数据来了解学生并调整教学。在这种证据化的环境下,教师可以也应该是位研究者。这可能需要他们具备 一种新型的数据读写能力,掌握数据分析知识,以支持基于证据的决策。这些数据也可以呈现给学生,有助于他们进行迭代反馈、形成性评价和进展概述,学生将成 为掌控自己学习进程的研究者。此外,专业研究者也可以使用同批数据。大数据时代,传统的研究者与实践者、观察者与被观察者之间的区别逐渐模糊。这种特性彰 显的是大数据的可访问维度,在某种程度上也决定了数据的外观、形式与目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11