
这节我们来学习回归诊断和残差分析,残差是指实际值减去预测值(实际值预测值)的数值。
用数据分析的回归分析,可以方便地求出残差。使用表1进行回归分析。
1、“工具”-“数据分析”,选择“回归”,单击“确定”。
2、弹出“Excel的回归分析”对话框。选中对话框下方的“残差”,单击“确定”(图1)。
回归分析的运行结果如表2所示。
残差分析
1、“工具”-“数据分析”,选择“直方图”,单击“确定”。
2、弹出“直方图”对话框。在“输人区域”中选择残差这列数据,包括项目名称。在“接收区域”不做任何操作(“接收区域”的输入内容不限。不做任何操作时,Excel自动进行计算)。选中“标签”,在对话框下方选中“图表输出”,单击“确定”(图2)。
直方图的输出结果如表3、图3所示。
若残差的直方图是正规分布图形,则判断模型良好。图3是接近正规分布的图形。
接下来求残差的“描述统计”。通过求残差的“描述统计”,把握“平均值”和“中位数”、 “最大值”、 “最小值”,可知数据的倾向和特征。求残差“描述统计’的操作步骤如下:
1、“工具”-“数据分析’,弹出“数据分析”对话框(图4)。选择“描述统计”,单击“确定”。
2、弹出“描述统计”对话框。在“输入区域”中,选择残差的区域。包括项目名称。选中“标志位于第一行”和“汇总统计”,单击“确定”(图5)。
输出结果,如表4所示。
从表4可知,残差的平均值是0,总和也是0。
回归模型中出现残差(误差)的前提条件是:平均值及总和是0,标准误差符合正规分布。
接近正规分布时,峰度也接近0。上述表格的峰度是0.38,偏度是0.10.都是接近0的数值,因此可以判断这是接近正规分布的图形。删除“颜色”进行回归分析和残差分析
这里故意删除影响度最大的“颜色”因子进行回归分析。残差的直方图会怎样变化昵?残差可能会出现偏颇或偏差,脱离正规分布吧!
图6是删除“颜色”因子的残差直方图。
与图3相比,看似只有细微差异,其实正规分布已被打破。因为从视觉上难以看出差异,所以需要求解残差的描述统计(表5)。
表4和表5的比较结果如下所示(表6)。
表5的中位数是11.49。删除“颜色”因子进行回归分析后,产生了偏差。
那么,残差的标准误差会发生怎样的变化呢?从66.53-98.72,而且数据区域扩大,最大值和最小值也变大(变小)。可见,通过描述统计可以判断差异的大小。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10