
小白学数据分析--相关分析之距离分析在道具购买量的
前几天,写过一篇关于相关分析的的文章,很多人都看到了并有很多人在咨询关于这篇文章的一些内容,相关分析是一类很有用的分析方法,如之前所提到的,相关分析由三部分组成,前几日的文章是讲了其中第一部分,第二部分是偏相关分析,第三部分就是复相关分析,说白了其实就是相关分析变量的多少来确定这三部分的。今天这里不谈偏相关分析,以为网友给我截图,问我下面的成交量相关系数的是怎么算出来的,其实这个就是复相关的典型应用,多变量的相关分析。插一句,该图来自于腾讯大讲堂15-市场研究及数据分析理念及方法概要介绍。大家如果需要,请到百度文库或者联系我都OK。
今天将通过Excel和SPSS向大家说说怎么来进行多变量的相关分析,既然是游戏数据分析,那么自然少不了如何利用游戏数据实现多变量的相关分析。在游戏数据分析方面,很多的数据都可以进行相关分析,比如界面按钮的点击次数,今天我们选取游戏道具的购买量进行相关分析。
我们知道游戏道具非常多,换句话说如果进行相关分析,尽管相关分析可以满足我们的计算要求,但是对于我们后期的评估和决策带来非常大不便利,所以这里建议大家做道具的相关分析先进行道具分类,比如FPS游戏中把AK47,M4A1归类为突击步枪,或者再高一个类别,武器,这样在不同的分类维度下进行相关分析,便于我们从不同的高度和角度来进行分析和决策。以下所示为示例数据(模拟),可以看到有7个品类的道具,从101-107,取出来共计10周的数据。
下面我们来看如何通过Excel进行多变量的相关分析。如何打开数据分析,选择相关分析,在上次文章已经提到了,这里不再累述,这里打开一下的对话框。
选择数据,数据区域选择B1:H1,选择好输出区域,点击确定,得到如下的相似矩阵:
有关这个矩阵的分析稍后在说完SPSS的操作再讲解,下面看看SPSS如何进行相关分析。在SPSS中,有专门的模块进行多变量的相关分析。SPSS中针对相关分析的三部分设置了三部分模块进行独立的分析。多变量的相关分析在SPSS中叫做距离分析,相对偏相关分析通过控制一些被认为次要的变量的影响得到两个变量之间的相关系数,距离分析解决的问题更加复杂,因为实际应用时每一个变量都携带了一定的信息,但是彼此在某些方面又是重叠的,举个例子,比如有个变量叫做突击步枪,突击步枪的销售量代表了AK47,M4A1等突击步枪的销售情况和信息,同时突击步枪也属于武器类别,与机枪等类别又有交叉,因为机枪和突击步枪都属于武器类别。
距离分析是对变量之间相似或者不相似程度的测度,通过计算一对变量之间的广义距离,将距离较小的变量归为一类,距离较大的变量归为其他类,这也是为聚类分析、因子分析打下基础。有关距离分析的更多详细内容这里不再累述,大家可以自己百度。
具体操作如下,首先看到SPSS中展示的数据,此为101-107系列道具的销售量:
之后选择分析|相关|距离界面,选择界面如下所示:
弹出对话框,如下所示,将var101-var107选入变量框中,此处最少包含两个变量。
计算距离包括两个两选择项,个案间和变量间,表示输出结果是个案或者变量间距离分析值。度量标准包括不相似性和相似性两个选项以及一个度量按钮。不相似性表示测度方法为不相似性测度。此时如果点击度量,弹出来距离:非相似性度量对话框,如下图所示:
有关该方面知识在这里不作解释和阐述,主要来看距离:相似性对话框的设置,首先如下图所示:
度量标准选择区间|Pearson相关性,转换值标准化|Z得分,其他的选项默认就可以了,这里简单解释一下几个选择的含义。Pearson相关性表示两个值矢量之间的积矩相关性,是定矩数据的缺省相似性测量。转换值是在计算距离之前对变量进行标准化的方法,这里使用Z得分,Z得分表示将值标准化到均值为0且标准差为1的Z得分,但同时注意标准化要指定标准化对象,这里是变量。
在完成以上的设置后,点击确定将会输出结果,上面的为案例处理摘要,下面的为距离分析的近似矩阵。
下面我们结合Excel和SPSS的分析结果来具体分析一下,在Excel的分析结果中,我们发现105系列道具相关性最弱,那么这个品类就需要我们去进一步探究一下。从SPSS的结果来看,105系列道具确实相关性系数较低,其次是103系列道具相关系数也比较低,但是从总体的Excel和SPSS分析结果来看,101与106、102与106、103与105、104与106、107与102相关性很高,这就是我们得出的结论,最后我们来看看这几个类别道具具体指的是什么:
101:突击步枪
102:冲锋枪
103:机枪
104:狙击步枪
105:shouqiang
106:投掷武器
107:近战武器
故而从这里我们再来看一下,大概了解了FPS游戏的玩家作战配置,突击步枪+投掷武器;冲锋枪+投掷武器;机枪+投掷武器;狙击步枪+投掷武器;冲锋枪+近战武器。当然这种配置不是绝对的,还要考虑游戏本身在这方面的设计情况,比如很多游戏主武器是突击步枪,副武器是冲锋枪,这种情况是要结合业务来考虑,而最终我们通过分析得出的结果,也要根据具体的需要进行筛选和调整。
以上是相关性分析的最复杂的一部分,希望解决一部分网友的疑问,这种方法的参考性和实际利用性还需要进一步检验和证明,属于探索内容,请使用者慎重考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11