
学习各种预测数据的方法
除了根据平均值预测数值以外,还有其他方法。本文介绍其中三种,大家来一起学习各种预测数据的方法。
问题:预测参加研究班的10人中昨天饮酒的人数。
1、根据平均值预测
通过统计“认为偏多的人数”和“认为偏少的人数”来预測实际人数。这是根据两种数据的“几何平均值”预测数值的方法。
首先进行问卷调查。针对昨晚饮酒的人数,请研究班的出席者选择“认为偏多的人数”或“认为偏少的人数”。统计回答结果,计算总体的简单算术平均值,并分别计算认为偏多、认为偏少的几何平均值。结果如下图所示。预测值是9.6人,即10人。
2、随机回答法(根据概率计算的方法)
接下来介绍根据概率预测的方法.当难以直接询问实际情况时,可以掺杂着询问其他问题,然后根据回答的概率进行判断,得出真实的答案.以匿名的方式请回答者按照指示回答问题,然后从结果(O)的个数中算出需要预测的数值。山于数据越多概率精确度越搞,因此要求每人回答两次。
由于总共有18人,所以可以预测饮酒者足10人。
3、德尔菲法(应用中位数)
德尔菲法是征询每位成员的预测值,相互参照后再次征询各位的预测值,征询几轮之后,使预测值趋于一致的方法。
首先以匿名方式征询每位成员的预测值,经过几轮之后,将预测值的分布情况和预测结果反馈给全体人员,井统计征询的结果。把具有代表性的中位数作为最终预测值。
(1)第一次直接让每位成员分别把预测人数写在纸上。
把分布结果中占总体l/4和3/4的预测人数公布给参加者。此处的第1/4(从少数派算起站总体的25%)是10人,第3/4(从少数派算起占总体的75%)是l2人。
(2)得知(1)的公布结果后,第二次调查时在此范围内进行回答。如果需要写出选择理由,问答可以超出(1)的范围。回收问卷,公布所有统计结果。若有超出范围的原因(意见),也要公布。此次结果如下所示,超出范围的回答有3人。
超出范围的原因
A、参加研究班不允许迟到,所以没饮酒:预测7人;
B、总体的1/3可能没饮洒,剩下的12人中假设有一半人饮洒:预测6人;
C、业务繁忙没时间饮酒:预测8人。
(3)获得第二次结果并仔细研究后进行第三次预测。由于这次的问答结过逐渐集中,所以把此次作为最终回答,那么判断统计结果的中位数就是预测人数。最终结果如下所示.
由于第二次询问了几个超出范围的理由,所以这次的回答分布比上次分散。统计结果的中位数是2/18,即总体中第9个值=10人。德尔菲法没有限制回答次数,它的目的是集中总体意见,判断总体中位数。
本文介绍了三种预测方法。得出的结果分别是(1)10人(2)10人(3)10人,属于Excel数据分析中优秀的案例。接下来,为了向参加者验证正确答案,请昨晚的饮酒者举手示意。在一片喧哗中,有l0人举手。这说明三种预测方法都是正确的,学习各种预测数据的方法后,实践验证成功应该鼓掌喝彩!请大家尝试运用各种方法进行预测吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11